中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74985
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42415306      線上人數 : 1671
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74985


    題名: 風力發電機軸承損壞訊號分析;Bearings fault signal detection used in wind turbines
    作者: 邱祺民;Qiu, Qi-Min
    貢獻者: 機械工程學系
    關鍵詞: 風機;軸承診斷;wind turbine;bearing diagnosis
    日期: 2017-05-22
    上傳時間: 2017-10-27 16:14:56 (UTC+8)
    出版者: 國立中央大學
    摘要: 風力發電在綠能產業具有潛力,其中風機運轉與健康狀況關係到發電的效能與安全性,為了檢測風力發電機的運轉狀況,先以接觸理論分析軸承損壞下的受力情況,軸承在不同部位損壞下會出現特定頻率的動態訊號,對此訊號使用短時距傅立葉分析(short-time fourier transform)、總體經驗模態分解法(Ensemble Empirical Mode Decomposition)與快速譜峰度法(Fast Kurtogram)做診斷。第一個案例中是已知軸承損壞的機械系統,利用上述訊號處理方法對訊號進行分析,並比較不同方法間之優劣。後再將此分析法運用在第二個分析案例,即分析風力發電機上量得之振動訊號;結果顯示即使分析元件包含齒輪與軸承,但使用快速譜峰度法仍然能找出疑似軸承損壞訊號;當使用短時距傅立葉時,會偵測到齒輪轉速訊號與軸承損壞訊號,判別上較為複雜;而使用總體經驗模態分解法軸承訊號所在之階層並不固定,必須每一階層觀察效率較差。;The goal of the research was to diagnose the bearing faults in rotary machines though examining their dynamic responses or vibration signals. A bearing has specific defect vibration frequencies which can be calculated from bearing design data. Short-time-Fourier transform, ensemble empirical mode decomposition (EEMD) and fast kurtogram were signal processing methods for detecting bearing faults. These signal processing methods were used to analyze the dynamic responses from a rotor system with a damaged bearing and were compared to each other. Then, the methods were applied to vibration signals from a small and medium wind turbine. The signals contain not only bearing signal but also gear mesh signal.
    The results show short-time-Fourier method could detect the bearing defect, the gear mesh signal and its harmonics, but the bearing fault signals are too complex to diagnose. Applying the fast kurtogram method which would usually filter out gear mesh signal and its harmonics could detect bearing fault signal more effective due to the transient characteristic of bearing fault signals. Using EEMD to analyze the vibration signals would decompose the original signal to several intrinsic mode functions (IMFs) possibly containing bearing fault signal in some decompositions. However, one still need to check each IMF for effectiveness.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML208檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明