至今化石能源逐漸耗竭,須有新的能源作為取代,而乾淨、環保、再利用的綠色能源為最受矚目及未來性的趨勢,其中以太陽能電池最具代表性。在當今眾多種類的太陽能電池中,III-V族多接面太陽能電池的轉換效率最佳,本實驗團隊將以濺鍍法在矽基板上鍍製n-type重摻雜鍺薄膜,形成一種可應用於III-V族半導體磊晶製程之新型Ge-Si基板,重摻雜之n-type膜層未來可以做為穿隧接面之應用,讓元件達到電流匹配,使III-V族多接面太陽能電池效率達到最佳化。 本論文研究之n-type重摻雜鍺薄膜的實驗架構為:1.改變製程溫度和濺鍍功率,測試出最佳鍍膜參數。2.以最佳鍍膜參數的樣品進行爐管熱退火,探討不同退火溫度及時間對鍺薄膜結晶性與摻雜濃度的改變。3.將n-type重摻雜鍺薄膜的厚度設計在100 nm以下,並研究其厚度對結晶性與摻雜濃度的影響。以此架構所製作的n-type重摻雜鍺薄膜,濺鍍厚度約為500 nm,在最佳化製程條件下,XRD量測分析半高寬為最小,摻雜濃度可大於1019 cm-3,而厚度設計在100 nm時,其摻雜濃度也可大於1018 cm-3。 ;In this study, n-type heavily doped germanium(Ge) thin films on silicon substrates by using magnetron sputtering method was investigated. Since the conversion efficiency of III-V multi-junction solar cell is still the highest, the n-type Ge films on silicon can be the virtual substrates to replace the high-cost Ge substrates. We used magnetron sputtering system with Sb/Ge alloyed target to grow the n-type heavily doped Ge films on Si (100) wafer. And the post annealing process was applied to improve the Ge thin film qualities. XRD, Raman spectrometer, AFM were used to analyze the crystallization of the Ge thin films. The Hall measurement was also applied to measure the carrier concentration and mobility of the n-type Ge thin films. The results showed the FWHM of the Ge (400) diffraction peak of Ge thin films can be improved as low as 0.3°. And the Hall measurement showed the carrier concentration of n-type Ge thin film can be increased to more than 1019cm-3.