考慮這樣的穩態的非線性波動方程式:$Mu+u^p=0$,其中微分算子M是正定自伴算子,p是常數。只有一個方程式時,數值上一般可以用Petviashvili method求出孤立波解。此處我們的感興趣的問題是一些二維的雙組份非線性薛丁格方程組,我們將Petviashvili method推廣到此方程組,並得到數值上的收斂。;
The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with-power-law nonlinearity: ?Mu + up = 0, where M is a positive de nite and self-adjoint operator, and p is constant. Due to the case is system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for two-component system of nonlinear Schrodinger equations (NLSE) for
2-D. From the numerical results, if the spectral radius of the numerical scheme for system is less than one, then we get quick convergence of the numerical method.