中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/75277
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78937/78937 (100%)
造访人次 : 39425389      在线人数 : 439
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/75277


    题名: 離子佈植對鎳合金矽化物之生成行為研究;Formation Behaviors and Microstructures of Nickel Alloy Silicide with Ion Implantation
    作者: 段生振;Twan, Sheng-Chen
    贡献者: 材料科學與工程研究所
    关键词: 鎳矽化合物;接觸片電阻;熱穩定性;離子佈植;Nickel silicide;Contact Sheet resistance;Thermal stability;Ion Implantation
    日期: 2017-10-11
    上传时间: 2018-01-16 10:42:55 (UTC+8)
    出版者: 國立中央大學
    摘要: 矽集體電路的尺寸微縮,一直追隨摩爾定律向高階製程挑戰,也因此降低互補式金屬氧化物半導體場效電晶體的接觸電阻,為矽集體電路半導體製造中最重要的課題之一。離子佈植係將各種不同的元素植入不同基材中,以改變材料特性及晶格之結構,進而降低電晶體的接觸電阻,於半導體製造程序具有重要之地位,這也是最近這幾十年來被廣泛應用於半導體製造的重要生產技術之一。
    本論文系統性地針對離子佈植或其他沉積技術將元素添加於鎳合金矽化物後,其生成之行為作一深入的探討與研究,以期解決對互補式金屬氧化物半導體場效電晶體微縮的挑戰,進而提昇半導體元件的性能。
    首先,經由實驗發現添加鋁於矽基材 (001) 之鎳矽化物中,其鎳合金矽化物之熱穩定性會相對提高;同時,也因為鋁原子的添加,而延緩矽化二鎳–矽化鎳化合物相變化的速度,更進一步加速了二矽化鎳鋁化合物於退火時相變化之速率。鎳合金矽化物的相變化速率,初期主要是受鋁原子於鎳鋁合金中的濃度影響,在比較Ni0.95Pt0.05/Si 和Ni0.95Al0.05/Si system 系統後,發現Ni0.91Al0.09/Si合金展現了很高的熱穩定性,縱使處於高溫退火1000秒之後,依然能保持良好的熱穩定性。本實驗也同時針對鋁原子對鎳矽化物的微結構、電性和熱穩定性的關係做進一步的探討與研究。經由本實驗證實,鎳鋁矽化合物因具有高溫熱穩定性的優點,可有效應用於先進互補式金屬氧化物半導體場效電晶體元件之源極/汲極接觸製程材料,以提升元件的性能。
    另一實驗係針對鈦離子於不同矽基材中對所形成的鎳矽化物之影響,並藉由TEM, GIXRD, XPS, and Raman等分析以進一步深入的探討與研究。結果顯示,鎳鈦矽化合物實驗系統中,由於鈦原子的低熔解率和低擴散速率,只有二矽化鎳化合物的產生。而且,在預離子佈植非晶質之矽基材上,由於離子佈植氙原子產生之非晶質矽,會抑制二矽化鎳化合物的生長,降低了鈦原子的自由能,在驅動力不足的情況下,而驅使鈦原子向非晶矽與結晶矽的介面堆積,又在高溫環境下形成二氧化鈦,阻止了鎳原子向矽基材擴散。因此,於預離子佈植非晶質之矽基材上的鎳矽化合物,若植入或沉積鈦離子後所生成的鎳鈦矽化合物,不僅會提昇鎳矽化合物生成的溫度,也會提高材料的熱穩定性,進而降低蕭特基能障,並降低接觸片電阻,進而提昇半導體元件之性能。;With the scaling of IC devices on Moore’s Law extension, the contact sheet resistance reduction is crucial on IC device fabrication. Ion implantation with additives elements for material modification and structural crystallization is one of the most critical methods for contact resistance reduction. It is also being widely used at semiconductor manufacturing in recent decades.
    This dissertation systematically investigated the formation behaviors and microstructures of Nickel silicide with ion implantation or deposited the additive elements for contact sheet resistance reduction to addressed the CMOS transistors scaling challenges as well as device performance improvement.
    Firstly, the experimental results showed the thermal stability of Nickel silicide was improved by adding Aluminum (Al) into Nickel silicides on Silicon (Si) (001), and the phase transformation of Ni2Si to NiSi was also retarded by adding Al atoms, it was also significantly speeds up the NiSi2-xAlx formation during annealing. The behavior of Nickel silicide phase transformation is strongly depending on the Al concentration of the initial Ni1-xAlx alloys. Compared to the Ni0.95Pt0.05/Si and Ni0.95Al0.05/Si system, the Ni0.91Al0.09/Si sample exhibits remarkably enhanced thermal stability, even after high temperature annealing for 1000 second. The relationship between microstructures, electrical property, and thermal stability of Ni silicide is discussed to elucidate the role of Al during the Ni1-xAlx alloy silicidation. This work demonstrated the Ni1-xAlx alloy silicide thermal stability would be a promising candidate as source/drain (S/D) contacts material in advanced complementary metal–oxide semiconductor (CMOS) devices.
    Secondly, the experiment is systematically investigated the effects of Ti-doped Nikel silicide on different substrates during the Nickel silicidation, especially on the Pre-amorphous Ion Implantation Si substrate with Xenon (Xe) ion implantation. The TEM, GIXRD, XPS, and Raman were used for metrology analysis. Due to lower diffusion rate and lower solubility of Titanium atoms in Ni0.9Ti0.1 on both Si and pre-amorphous ion implant Si (PAI-Si) substrates, it led to the NiSi2 formation. The formation of NiSi2, will reduce the free energy and force the Titanium atoms accumulated at the interface, then transformed into TiO2 at higher temperature to prevent the Nickle diffuses into the substrates. Especially on PAI-Si, the implanted Xe atoms will postpones the formation of NiSi2 and reduce the free energy, force the Titanium accumulated at the crystalline/ amorphous interface as diffusion barrier layer. Thus, in PAI Si substrate, the Titanium Nickel silicide will increase the formation temperature of NiSi2, which could increase the thermal stability, but also reduce the Schottky Barrier Height for contact resistance reduction to boost the CMOS devices performance.
    显示于类别:[材料科學與工程研究所 ] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML429检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明