English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22917461      Online Users : 167
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/75305


    Title: 視訊監控物聯網架構的人臉辨識系統;The Internet of Things Framework toward Face Recognition System
    Authors: 江仕傑;Chiang, Shih-Jie
    Contributors: 資訊工程學系在職專班
    Keywords: 物聯網;人臉偵測;邊緣計算;人臉辨識;深度學習;Internet of Things;Face Detection;Edge Computing;Face Recognition;Deep Learning
    Date: 2017-11-27
    Issue Date: 2018-01-16 11:04:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 人臉辨識應用,經常都在高性能主機的伺服器上執行,但在雲端伺服器上,無法滿足即時性和可靠性需求。
    本研究提出一個智慧型視訊監控物聯網架構,對此,應用裝置端是低硬體資源的攝影機,實作嵌入式人臉偵測;閘道器端是邊緣計算(edge computing)伺服器,執行深度學習人臉辨識。而雲端服務是一個Web界面,監控人機界面,使用者可由遠端,進行設定與監控目前影像狀況。
    實驗驗證結果顯示,攝影機端能快速偵測,並擷取人臉影像,透過物聯網,傳至閘道器,執行深度學習,實現高效率人臉辨識。一來,滿足即時人臉辨識的需求,二來,減少網路頻寬的負擔。透過此研究,提高視訊監控物聯網系統整體效能,進而使物聯網時代快速推動。
    ;Face recognition application can execute in the server of high-performance mainframe constantly, yet it cannot meet the requirements of instantaneity and reliability in the cloud server.
    This thesis aims to investigate the Internet of Things (IoT) framework toward intelligent video surveillance (IVS). The device end is a hardware-constrained camera embedding with face detection system whereas the gateway end is an edge computing server, executing deep learning face recognition. Moreover, cloud service is a web interface embedding with human machine interface, thus the user can remote the setting and monitoring for the current image status.
    The findings of this research shows that the camera end can quickly detect and capture the face image to the gateway end in virtue of the IoT. It executes the deep learning and achieves high efficiency technology regarding face recognition. For one thing, IVS can meet the demand of real time face recognition. For the other, it can lighten the burden of network bandwidth. I believe that the findings from my thesis can elevate the overall effectiveness of IVS, and then open up a new era for the IoT.
    Appears in Collections:[資訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML272View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明