English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23119952      Online Users : 199
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/75872

    Title: 單面及雙面旋性聚合物穩固藍相液晶之光電特性;Electro-optical properties of single- and double-side chiral polymer-stabilized blue phase liquid crystals
    Authors: 洪祥益;Hong, Siang-Yi
    Contributors: 光電科學與工程學系
    Keywords: 藍相液晶;旋性聚合物
    Date: 2018-01-31
    Issue Date: 2018-04-13 11:01:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 藍相液晶最初被發現時僅存在於相當窄小的溫度範圍,而至今已有許多使藍相液晶存在溫度範圍拓寬的方法被提出,其中由日本H. Kikuchi教授團隊所提出的高分子聚合物穩固藍相液晶(Polymer-stabilized blue phase liquid crystals)為目前最常被利用於拓寬藍相液晶存在溫度範圍的方法。本實驗室於2016年提出相較於Kikuchi教授團隊不同的拓寬藍相液晶存在溫度範圍的方法,此為表面穩固藍相液晶(Surface-stabilized blue phase liquid crystals),而本論文將探討於兩種不同聚合方式對於藍相液晶光電特性之影響。
    ;One of the advantages of blue phase liquid crystals (BPLCs) is the property of fast response. However, the intrinsic temperature range of BPLCs is too narrow to be applied for real application. To expand the temperature range of BPLCs, several methods have been proposed. Among them, in 2002, Kikuchi et al. proposed a useful method to expand the temperature range of BPLCs based on polymer stabilization technique, which is the most commonly used method to widen the temperature range of BPLCs. In 2016, our lab proposed another method to broaden the temperature range of the BPLCs by surface stabilization technique. In this study, a comparison of electro-optical (EO) properties between the polymer stabilized (PS) BPLCs and the surface stabilized (SS) BPLCs will be made. Moreover, some characteristics of EO properties of SSBPLCs and PSBPLCs will also be demonstrated.
    The study can be divided into three parts. First, we will discuss the change of effective refractive index difference of PSBPLCs under various applied voltages, whose direction is perpendicular to the substrate, by an inclined input light beam. Second, we will discuss the method to decrease the operation voltage of PSBPLCs. The operation voltage is high/low with/without adding photo-initiator in PSBPLCs. Third, the polarization dependent diffraction patterns and efficiencies of PSBPLCs and SSBPLCs will also be investigated. In the second and third parts of experiments, we will show that the optical hysteresis effect of SSBPLCs is smaller than that of PSBPLCs. Moreover, the response time of PSBPLCs/SSBPLCs in the second and third experiments will also be investigated.
    We believe that the investigation in this study will be a useful reference to further studies of the SSBPLCs/PSBPLCs. Either the SSBPLCs or PSBPLCs have great potential to be applied for optical devices, such as LC display, grating, etc.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明