檢定疾病基因座與標識基因座間是否存在連鎖不平衡之相關性研究,可利用家庭資料或是族群資料進行分析,當二基因座間存在連鎖,利用家庭資料檢定應該會得到較穩健的分析結果,是近年遺傳流行病學重要方法之一。目前最廣為應用的檢定方法為傳遞-不平衡檢定(transmission/ disequilibrium tests,TDT)及其他隨著TDT統計量衍生的檢定統計量,但是在複雜的遺傳問題分析中若出現基因型判別錯誤時,在虛無假設下的型I誤差會隨其錯誤率越高而越大,無法維持一固定顯著水準。因此本文試圖研究這種問題,並且將所提的統計量與既有的統計量互相比較,希望能得到一個較穩健的檢定統計量,作為日後研究及分析遺傳資料的選擇。 Family-based and population-based are two types of designs for association studies.The family-based study in general is more robust than population-based study due to population stratification if the genetic markers and disease-susceptibility locus were linkage.Thus, family-based association study is a useful approach for detecting linkage and linkage disequilibrium between a disease gene and a marker in genetic analysis. Recently, the transmission/ disequilibrium test (TDT) and the allied tests have become popular tools in studies of association test. However, for the complex hereditary analysis, the type I error can't maintain a fixed significant level because of varing errors in genotyping. In this article, we try to construct and discuss statistics which are more robust under genotyping error.