English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27367349      Online Users : 379
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7651

    Title: 隱含波動率之模型及預測:以台灣市場為例
    Authors: 鄒紹輝;SHAO-HUI TSOU
    Contributors: 統計研究所
    Keywords: 隱含波動性;Black-Scholes 模型;GARCH模型;Black-Scholes Model;GARCH Model;Implied Volatility
    Date: 2006-06-08
    Issue Date: 2009-09-22 11:01:41 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 摘要 波動性的問題一直是多年以來各界所著墨的焦點,為了解何種波動性模型所算出的理論價格最貼近於市價,於是本研究利用不同之四種方法,來預測TXO未來一星期的波動度,代入到B-S 模型中得出TXO之理論價格,且利用三種價格誤差的指標,平均絕對誤差(mean absolute errors, MAE)、平均絕對誤差百分比(mean absolute percentage errors, MAPE)及均方誤 (root mean squared errors, RMSE),來比較理論價格與TXO市場價格的差異,並探討模型、參數及預測能力是否會隨著資料的變動而有所改變。最後再使用成對樣本T檢定,比較不同波動度模型下,所有預測之理論價格與市場價格的價格誤差之差異,是否會有相對顯著,希望藉此能找出一適合的模型,可較準確地預測出TXO的合理價格,以降低交易上的損失。 Abstract The problem of the volatility has been the focus of research for many years. In order to understand the volatility model most suitable for real market data ,we utilize four different models to model the implied volatility for one week TXO future. Three different measurements are used to compare the performance of the models. They are : mean absolute errors (MAE), mean absolute percentage errors (MAPE) and root mean squared errors (RMSE). Real data were applied to study the usefulness of the models.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明