中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7661
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%)
Visitors : 23083655      Online Users : 773
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7661


    Title: 二元資料之連結函數之有母數強韌迴歸
    Authors: 游菀菁;Wan-Jing You
    Contributors: 統計研究所
    Keywords: 二元資料;binary data
    Date: 2006-06-08
    Issue Date: 2009-09-22 11:01:50 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 摘要 二元資料之分析大部分的情形都是使用邏輯斯迴歸模型。但事實上,適合之模型不見得是邏輯斯迴歸模型。 本文之目的在使用Royall and Tsou(2003)之強韌概似函數法。將二項分配模型做適當之修正後,使得在大樣本之情形下,即使二元資料之分配非二項分配,亦能對連結函數做正確之推論。 Abstract This thesis utilizes the robust likelihood technique proposed by Royall and Tsou(2003) to develop parametric robust inferences about the link function for binary response variables. More specifically, the binomial model is corrected to become robust. With large samples the adjusted binomial likelihood is asymptotically legitimate for the relationship of interest. One needs not know whether the binary data are correlated or not, or the extent of the correlation exists in data. Simulations are used to demonstrate the efficacy of the proposed robust method.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat
    0KbUnknown652View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明