近年來鈣鈦礦太陽能電池藉著其低製程成本及高效率等顯著優點而蓬勃發展,其中影響商業應用的最大挑戰是電池的穩定性。 本研究著重於將摻銫與未摻銫的鈣鈦礦薄膜做比較,分析其結晶狀態,表面形貌及應用於太陽能電池的光電性能的差異,發現添加碘化銫能有效提升成膜性、晶體粒徑大小、電池效率及其穩定性,證明了添加碘化銫在混合鈣鈦礦溶液中的重要性。 之後進行製程方面探討,利用旋塗方式製備摻銫鈣鈦礦薄膜,藉由調整薄膜的成膜時間及溫度,分析材料晶體,表面型態、元件光電性質表現及穩定性測試來探討其最佳條件及製程與電池性能關聯性。研究發現在低溫(100oC)且短時間(15min)熱處理,容易呈現反應不完全的現象;而在高溫(155 oC)且熱處理時間拉長(60min)時,PbI2會大量析出使晶體結構破壞,因此得出最佳化條件為在135 oC下進行熱處理60分鐘,將其應用於n-i-p結構的鈣鈦礦太陽能電池中,光電轉換效率可達18 %。且將元件放置於低濕環境中保存300小時,元件效率可維持原本的 70 %。最後測量薄膜之長期穩定性,並與元件穩定性兩者相比較,得出製程對於元件製作的影響及相關性。 ;In recent years, perovskite solar cells have flourished with significant advantages such as low cost and high efficiency. The major challenge for the commercial application is the stability. This study focuses on the difference of the perovskite solar cell with or without cesium-doped, with film analysis, power conversion efficiency and stability testing. we analysis crystallization, surface morphology and the electrical properties of the solar cells. It was found that the cells with cesium-doped effectively improve the film uniformity, efficiency and stability. Then we use spin coating method to fabricate the perovskite film, by adjusting the film formation time and temperature; we optimized the best temperature at 135 degree Celsius with annealing 60 minutes. We found that with the lower temperature and the shorter time annealing, the easier incomplete reaction to be discovered. However, higher temperature and the longer heating time, a large amount of PbI¬2 will deposit and destroy the crystal structure. This result applied to n-i-p type solar cells, the power conversion efficiency is up to 18%. After measuring its long-term stability, it was found stable that the efficiency maintains 70% about 300 hours in a low-humidity environment.