中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7693
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 66984/66984 (100%)
造访人次 : 22917520      在线人数 : 190
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7693


    题名: 多個母體的變異係數比較之有母數強韌法;Parametric robust test for several coefficients of variation with unknown underlying distributions
    作者: 沈佩萱;Pei-syuan Shen
    贡献者: 統計研究所
    关键词: 變異係數;coefficient of variation;robust test
    日期: 2007-06-05
    上传时间: 2009-09-22 11:02:22 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在判別多組連續型資料的變異係數是否相等時,常假設資料服從常態分配,然後進行分析。但是,當資料不服從常態分配時,那麼根據此假設所得到的統計推論便會是不對的。 本文將Royall and Tsou(2003)提出的強韌概似函數的方法,應用在多母體變異係數間之比率的推論上。利用經適當修正過的常態概似函數,提供一個只要母體真正分配的四階動差存在,變異係數正確的統計推論方法。 This paper uses the robust likelihood technique proposed by Royall and Tsou(2003) to develop a parametric robust score test for testing the equality of coefficients of variation. More specifically, it is demonstrated that the normal likelihood function could be adjusted to provide asymptotically valid inferences for practically all continuous random variables, as long as the underlying distributions have finite fourth moments. Three-sample problem is investigated in details, and the adjustment that achieves the robustness property is presented. Simulation studies are executed to demonstrate the finite sample performance of the novel robust procedure. Real data analyses are provided to compare several procedures for testing the equality of coefficients of variation.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数
    0KbUnknown646检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明