English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23199692      Online Users : 408
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7702


    Title: 具相關性的二元資料之有母數強韌分析法
    Authors: 鈴木豪志;Koji Suzuki
    Contributors: 統計研究所
    Date: 2007-06-05
    Issue Date: 2009-09-22 11:02:35 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在生物統計學或其他的領域中,常常會接觸到具有相關性的二元資料,這些相關性可能是由基因、環境、重複測量或是時間造成的。而分析二元資料時,大部份的情形都是使用邏輯斯迴歸模型。 Tsou (2006a) 提出分析具有相關性之二元資料的強韌概似函數法。此強韌分析法,在大樣本之情形下,即使二元資料彼此有相關或分配不是二項分配時,也能對迴歸參數作正確之推論。 本文之目的是將該文章中所計算出的修正項,在不同的架構之下做進一步的推算,以釐清修正項與自變量及相關性間的關係。 Correlated data are commonly encountered in biostatistics and other research fields. The correlation may come from the genetic heredity, familial aggregation, environmental heterogeneity, or repeated measures. Tsou(2006a) proposed a parametric robust likelihood technique that provides parametric robust inferences for correlated binary data. Specifically, Tsou(2006a) modified the binomial working model to become robust. With large samples the adjusted binomial likelihood is asymptotically legitimate for correlated binary data. In this work, the adjustments that corrected the binomial working model are inspected in details to reveal how the covariates affect the magnitude of adjustments.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明