English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70588/70588 (100%)
Visitors : 23126457      Online Users : 545
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7706

    Title: 負二項廣義半加法模型迴歸係數之有母數強韌推論法-探索性的研究
    Authors: 賴佳民;Jia-min Lai
    Contributors: 統計研究所
    Keywords: 強韌概似函數;廣義半母數加法模型;負二項;negative binomial;generalized additive model;robust likelihood
    Date: 2008-06-03
    Issue Date: 2009-09-22 11:02:41 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本論文之目的是試著推廣Royall and Tsou (2003)所提出的強韌概似函數的概念,建立廣義半母數加法模型迴歸參數的強韌推論法,而研究之主題是以負二項分配為實作模型來分析個數資料。特別強調的一點是,由於半母數加法模型中有平滑函數,因此,廣義半母數加法模型並不滿足所謂的正規條件。 文中我們推導出迴歸參數的實作概似函數的修正法,而修正過的強韌概似函數,在大樣本及二階動差存在的條件之下,提供迴歸參數的正確概似函數。模擬研究則顯示強韌概似比檢定統計量的確提供正確的統計分析。 The purpose of this research is trying to explore the applicability of the robust likelihood methodology introduced by Royall and Tsou (2003) to the generalized semi-additive models. The focus is to develop robust likelihood inferences about regression parameters using the negative binomial distribution as the working model. We showed details of the derivations of the adjustments that properly amends the working likelihood function. The efficacy of the proposed parametric robust method is demonstrated via simulation studies. It is shown that robust likelihood approach is effective despite the irregularity situation provoked by the nonparametric smooth function in regression.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明