English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64745/64745 (100%)
造訪人次 : 20494506      線上人數 : 399
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7708


    題名: 兩獨立二項分布勝算筆的區間估計之研究;Confidence Intervals for the Odds Ratio in Two Independent Binomial Samples
    作者: 張碩文;Shuo-wen Chang
    貢獻者: 統計研究所
    關鍵詞: 區間估計;勝算比;正確條件方法;正確非條件方法;兩獨立二項分布;the Exact Unconditional Approach.;Two Independent Binomial Samples;the Exact Conditional Approach;Odds Ratio;Interval Estimation
    日期: 2008-06-04
    上傳時間: 2009-09-22 11:02:45 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 針對兩獨立二項母體的勝算比,我們通常會以區間估計的方式來探討勝算比。一般而言都是使用大樣本近似方法建構勝算比的信賴區間,但在中、小樣本時,此方法誤差會很大,故本文使用正確條件法及正確非條件法建構勝算比的信賴區間。由正確條件法所建構的信賴區間常具有保守性;由正確非條件法所建構的信賴區間會有最短的區間長度,其覆蓋機率會靠近名目水準 1-α 且不小於 1-α 。 For the interval estimation of the odds ratio in two independent binomial samples, the usual method to construct confidence interval is the large-sample approximation method. But, such a method will produce a confidence interval which has the actual significant level much larger than or equal to the nominal lever if the sample sizes are small or moderate. In this paper, we use the exact conditional approach and the exact unconditional approach to obtain a modified interval. Numerical studies show that confidence intervals based on the exact conditional approach can be conservative with small to moderate sample sizes. The modified confidence intervals based on the exact unconditional approach has shorter length, and its coverage probability is closer to and at least the nominal level.
    顯示於類別:[統計研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0KbUnknown739檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明