English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23268716      Online Users : 676
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77362

    Title: 成對資料下名目與有序資料一致性kappa 參數的強韌概似分析;Robust likelihood analysis of the agreement kappa coefficient for paired nominal and paired ordinal data
    Authors: 李怡萱;Lee, Yi-Hsuan
    Contributors: 統計研究所
    Keywords: 相關性資料;一致性Kappa;強韌概似函數;Correlated data;Agreement Kappa;Robust likelihood function
    Date: 2018-06-29
    Issue Date: 2018-08-31 14:35:25 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文在診斷結果有三種可能的情況下,針對群集成對資料下的kappa 參數及加權 kappa 參數進行推論,建立kappa 參數之強韌概似函數。利用此強韌概似函數,在不需要特別對於群集間的相關性建立模型假設下,仍可以得到概似比檢定統計量及根據概似比檢定統計量所得到的信賴區間等正確的推論結果。同時,我們將用模擬與實例分析來比較我們的強韌推論方法與Yang and Zhou (2014, 2015)分別提出的在群集成對資料下的kappa 及加權kappa 的無母數推論方法。;In this paper, we construct a robust likelihood function for the agreement kappa/weighted kappa coefficient for clustered paired data in the case of three-category diagnostic outcome scenario. Utilizing this robust likelihood function, one can construct robust likelihood ratio (LR) statistic and LR-based confidence intervals without specifically modeling the intra-cluster correlation. We also make comparison between our robust likelihood approach and the nonparametric inferential method for kappa with paired data proposed by Yang and Zhou (2014, 2015) via simulations and real data analysis.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明