English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41638240      線上人數 : 1718
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77583


    題名: 基於序列到序列之問題-答案對生成模型;Generating Question-Answer Pairs from Document with Sequence to Sequence Modeling
    作者: 湯珮茹;Tang, Pei-Ju
    貢獻者: 資訊工程學系
    關鍵詞: 閱讀理解;序列到序列;問題-答案對;動態字典;Reading Comprehension;Sequence to Sequence;Question-Answer Pair;Dynamic Vocabulary
    日期: 2018-07-20
    上傳時間: 2018-08-31 14:49:02 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來有許多回答問題及產生問題的研究應用於閱讀理解中,並獲得相當不錯的成效。回答問題研究的目標是通過閱讀文章來回答問題,而產生問題研究希望根據文章產生多樣性問題且可作為閱讀測驗的考題。然而,產生問題有時會產生超出文章本身的範圍,以致於機器無法產生解答。本論文為了解決上述問題-答案不成對的問題,提出一解決方案。用戶只要輸入文章及問題類型,系統即可輸出具有品質的問題-答案對,其產生的問題和答案必須關注在相同的輸入文章句子上,並具備流暢度、相關性及正確性。
    在本論文中,我們採用基於注意力機制的序列到序列模型,並於訊息編碼中加入階層式輸入。為了解決從龐大字典中產生問題及答案而造成無法收斂,所以輸出問題及答案採用動態字典,除包含常用單詞之外,還有隨文章不同而動態改變的單詞,讓訓練能夠收斂並大幅提升模型能力。所訓練的模型除了能產生問題-答案對之外,也能作為回答問題及產生問題,且效能優於檢索式模型。;In recent years, many studies in question answering and question generation have been applied in reading comprehension with satisfactory performance. Question answering aims to answer questions by reading documents, and question generation attempts to generate diverse questions from given documents and as reading test questions. However, some questions generated in question generation studies are beyond the scope of the given documents themselves, so that the machine cannot find an appropriate answer. In this thesis, we propose an approach to resolve the above question-answer unpaired situations. Given a document and the question type, the system can output a question-answer pair with quality. The question and answer generated must focus on the input document with fluency, relevance, and correctness.
    In this thesis, we use the attention-based sequence-to-sequence model and add hierarchical input to the model encoder. In order to solve the problem that the model generating question and answer from huge vocabulary cannot converge, the output question and answer adopts a dynamic vocabulary, which includes not only commonly used words, but also words dynamically changing with the document. Such approach makes the training to converge and improves model capabilities. The trained model can generate question-answer pairs as well as do question answering and question generation. The resulting performance is better than the retrieval-based model.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML94檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明