English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21375238      Online Users : 226
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7761


    Title: 數論在密碼學上的應用;Number Theory in Cryptography - a General Survey
    Authors: 黃博峙;Bo-Chih Huang
    Contributors: 數學研究所
    Keywords: 橢圓曲線;離散對數;整數分解;質數檢定;密碼學;Factoring Integer;Primality Test;Cryptography;Discrete Logarithm Problem;Elliptic Curve
    Date: 2000-07-18
    Issue Date: 2009-09-22 11:04:43 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 此篇論文的主要目標是對現今密碼學的發展做一個概略的介紹,並對其中關於數論應用的部份做一個整理。其中包括根據整數分解的困難性所建立的 RSA 密碼系統,以及根據離散對數問題所建立的各種密碼系統。此外,並介紹一些判定質數的方法,以及一些有效分解整數的演算。針對解離散對數的問題,我們也做一些介紹。另外,在論文的後半段,我們簡單的描述一些關於橢圓曲線的性質,並介紹橢圓曲線在整數分解,及密碼學上的應用。最後,我們介紹一些計算橢圓曲線在有限體上有理點個數的方法。除此之外,我們也針對以上所提及的演算法,討論關於其複雜度得問題,使我們可以對各演算法做一個時間上的比較。 The purpose of this thesis is to make a general survey of the development of cryptography and to discuss the mathematical background of cryptography. We first introduce the RSA cryptosystem which is based on the difficulty of factoring a large integer, and other cryptosystems based on the problem in number theory so called discrete logarithm problem. Then we describe some methods which can determine whether or not a given integer is a prime number and methods of efficient factoring large composite integers, and some methods of solving discrete logarithm problem on finite fields. In the second half of this thesis, we present some basic properties of elliptic curves and introduce a factorization method which is based on properties of elliptic curves over finite fields. Some elliptic curve cryptosystems will be introduced. In the final section of this thesis, we discuss some methods of counting the number of rational points on the elliptic curve over finite fields.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown619View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明