這篇論文探討的是a^n-b^n 的原質因子。當a,b 皆為整數時,我們從[1]的介紹中很清楚地看到:除了少數幾個n之外,幾乎所有的a^n-b^n 都有原質因子。本文中,我們將a,b 推廣到高斯整數,但遭遇到困難,因而將a,b 限制成:︱a ︱> = ︱b ︱+1。最後,我們也證明了在此條件之下,除了少數幾個n之外,幾乎所有的a^n-b^n 都有原質因子。 The purpose of this thesis is to study the primitive factors of a^n-b^n, where a,b are nonzero relatively ffgg prime Gaussian integers with |a| > = |b|+1 and n is a positive integer. We have an analogous result to the case where a and b are rational integers: There are only finitely many numbers of n such that a^n-b^n has no primitive factors.