中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77702
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41652080      在线人数 : 1668
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77702


    题名: 運用深度學習方法預測癌症種類及存活死亡與治癒復發;Deep learning in predicting outcomes of cancer type, overall survival and disease free survival
    作者: 陳柏傑;Chen, Po-Chieh
    贡献者: 資訊工程學系
    关键词: 機器學習;癌症;醫學預測;深度學習;Maching Learning;Cancer;Medical prediction;Deep learning
    日期: 2018-08-07
    上传时间: 2018-08-31 14:53:19 (UTC+8)
    出版者: 國立中央大學
    摘要: 深度類神經網路(DNN)在各個不同的領域,舉凡聲音,影像等領域中皆有不凡的表現,而目前在生醫工程方面也陸續有深度學習方法的應用,而本論文中,我們使用來自The Cancer Genome Atlas(TCGA)上,針對DNA去做次世代定序而得出的RNA-seq資料,因其通量數高,且背景雜質低的特性,所以能最正確的偵測基因表現量。
    在本篇論文裡,主要大方向為三:
    1. 使用基因表現來判定癌症種類之預測
    2. 分別對肺癌、乳癌、腦癌之存活,死亡分析其分類
    3. 分別對肺癌、乳癌、腦癌之治癒,復發分析其分類
    在本篇論文裡,實驗了一部份機器學習之方法,如決策樹(Decision Tree),以及支援向量機(Support Vector Machine),XGBoost(Extreme Gradient Boost),也加入深度學習之方法,深度神經網路(Deep Neural Network)、自編碼器(Auto-encoder)及變異型自編碼器(Variational Auto-encoder),去比較各個方法的辨識率。
    ;Deep neural networks (DNN) have extraordinary performances in various of fields such as sound and image processing. Recently, deep learning methods are applied in the field of biomedical engineering. In this paper, we use the RNA-sequencing data from TCGA (The Cancer Genome Atlas), which is sequenced from RNA data and generated by NGS (Next Generation Sequencing). Due to its high flux number and low background impurities, the most accurate detection of gene expression become possible.
    In this paper, we have tree main directions:
    1. Classification of cancer types based on RNA- sequencing data.
    2. To predict the OS (Overall Survival) of lung, breast, and brain cancer.
    3. To predict the DFS (Disease Free Survival) of lung, breast, and brain cancer.
    In this paper, we have experimented with a number of methods of machine learning, such as Decision tree, Support Vector Machine and XGBoost (Extreme gradient boost), as well as deep learning methods, including DNN (Deep neural network), autoencoder and VAE (Variational Autoencoder). Our goal is to perform all of these methods and compare the recognition rate of each method.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML162检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明