English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42800389      線上人數 : 944
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77705


    題名: 基於深度學習之殘響消除;Acoustic Reverberation Cancellation Based on Deep Neural Network
    作者: 陳昱安;Chen, Yu-An
    貢獻者: 資訊工程學系
    關鍵詞: 殘響;深度學習
    日期: 2018-08-08
    上傳時間: 2018-08-31 14:53:24 (UTC+8)
    出版者: 國立中央大學
    摘要: 聲音在日常生活中扮演著重要的地位,但大多環境內往往會有殘響的存在,例如視訊會議、遠距教學甚至是手機通訊等面對的議題,因此語音的清晰度顯得格外為重要。
    深層類神經網路(Deep Neural Network, DNN)目前已經成為處理訊號問題的熱門方法。本論文主要以深層網路為基礎設計一個不同於以往的新架構,結合了自編碼器與深層遞迴類神經網路,稱之序列至序列自編碼模型(Sequence to sequence Autoencoder, SA),作法是用經由短時傅立葉轉換後,將能量資訊(magnitude)輸入至網路模型,藉由同時考慮能量的時間關係和自身的結構資訊,輸出為預估的能量大小,並結合相位資訊(phase)映射回時域上。最後,本論文提出的方法使用Chime4和REVERB challenge 2014的資料作評估,實驗結果顯示本方法較其他深度類神經網路更加優秀。
    ;Sound plays an important role in daily life, but most of the environment often has reverberations, such as video conferencing, distance education, and even mobile communication. Therefore, the clarity of speech is particularly important.
    The Deep Neural Network (DNN) has become a popular method for dealing with signal problems. This paper mainly designs a new architecture different from the previous one based on the deep network. It combines the Auto-Encoder and deep recursive neural network, called the sequence to sequence Autoencoder (SA). The method is to input the magnitude into the network model by using the energy of output of the short-time Fourier transform. Considering the temporal relationship of energy and its structural information, the estimated energy is output and then combined with the phase information to map to the time domain. Finally, the proposed method in this paper uses Chime4 and REVERB challenge 2014 data for reverberation elimination. The experimental results show that this method is superior than other deep neural networks.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML149檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明