English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67783/67783 (100%)
Visitors : 23047359      Online Users : 204
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77727


    Title: 以生成對抗式網路產生特定目的影像—以虹膜影像為例;Using Generative Adversarial Network to Automatically Generate Images for Special Purpose: A Case Study for Particular Iris Images
    Authors: 吳建穎;Wu, Jian-Ying
    Contributors: 資訊工程學系
    Keywords: 生成對抗式網路;虹膜影像;影像辨識;Generative Adversarial Network;Iris image;Image identification
    Date: 2018-08-15
    Issue Date: 2018-08-31 14:54:11 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 生成對抗式網路(Generative Adversarial Network,GAN)[1] 是目前人工智慧最熱門的研究之一。GAN是一種強大的生成模型,其想法源自於博弈論的二人零和博弈,由一個生成器和一個判別器所組成,並透過對抗式學習的方式來達到訓練的效果。在以CNN為主軸的影像辨識工作上,在實務上遇到的第一個困難就是,如何蒐集大量的影像以供深度學習網路的訓練及測試使用。在虹膜辨識的演算法開發上,也有類似的問題。這篇論文中,我們提出了一種新的條件式生成對抗式網路,我們結合了WGAN-GP與一個獨立的分類器,使其能達到我們想要結果。運用此研究方法,可以根據我們自行設定的條件,產生某些特殊的影像,以此解決在進行深度學習實驗時訓練資料影像不足的問題,讓實驗達到更好的結果。;Generative Adversarial Network (GAN) is one of the most popular researches in the field of artificial intelligence. GAN is a powerful generation model. The idea is de-rived from the two-person zero-sum game of game theory. It consists of a generator and a discriminator. By simultaneously training these two models via adversarial net, both will become more powerful for the task they are designed to achieve. In the work of image identification based on CNN, the first difficulty in practice is how to collect enough images for the training and testing of the deep learning network. There are similar problems in the development of iris recognition algorithm. We construct a WGAN-GP combined with independent classifier, to achieve the de-sired results. Using this method, we can generate special images according to our condi-tions to solve the problem of insufficient image of training data in the course of deep learning experiments, and therefore, enhance the final recognition accuracy for the de-sired tasks.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML57View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明