English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41628734      線上人數 : 3285
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/77735


    題名: 一種基於Faster R-CNN的快速虹膜切割演算法;A Fast Iris Segmentation Algorithm based on Faster R-CNN
    作者: 黃柏仁;Huang, Po-Jen
    貢獻者: 資訊工程學系
    關鍵詞: 生物識別;虹膜辨識;iris segmentation;Faster R-CNN
    日期: 2018-08-16
    上傳時間: 2018-08-31 14:54:25 (UTC+8)
    出版者: 國立中央大學
    摘要: 虹膜區域切割是整個虹膜識別流程中關鍵的步驟,大多數目前先進的虹膜區域切割演算法皆是建立於圖像的邊緣信息,然而,一般基於邊緣信息的檢測器會在出現鏡面反射或其他障礙物的圖像上產生過多影響定位虹膜內外邊界的雜訊點。本文提出了一種結合邊緣信息以及基於學習的混合型虹膜區域切割演算法,使用了僅有六層且設計良好的Faster R-CNN來定位且識別圖像上的眼睛,根據Faster R-CNN找到的區域邊界框,利用高斯混合模型定位瞳孔區域,最後透過五個關鍵的虹膜內邊界點擬合出虹膜內邊界圓,再以改良後的MIGREP演算法和邊界點選擇演算法找尋虹膜外邊界圓的邊界點,由這些找到的虹膜外邊界點擬合出虹膜外邊界圓。實驗結果顯示了本文所提出的演算法在具挑戰性的CASIA-Iris-Thousand資料庫上達到95.49%精確度。;Iris segmentation is a critical step in the entire iris recognition procedure. Most of the state-of-the-art iris segmentation algorithms are based on edge information. However, a large number of noisy edge points created by a normal edge-based detector in an image with specular reflection or other obstacles will mislead the pupillary boundary and limbus boundary localization. In this paper, we present a combination method of learning-based and edge-based algorithms for iris segmentation. A well-designed Faster R-CNN with only six layers is built to locate and classify the eye. With the bounding box found by Faster R-CNN, the pupillary region is located using a Gaussian mixture model. Then, the circular boundary of the pupillary region is fit according to five key boundary points. The enhanced version of MIGREP and a boundary point selection algorithm are used to find the boundary points of limbus, and the circular boundary of limbus is constructed using these bounding points. Experimental results showed that the proposed iris segmentation method achieved 95.49% accuracy on the challenging CASIA-Iris-Thousand database.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML147檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明