 English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%) Visitors : 23073028      Online Users : 667
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 Home ‧ Login ‧ Upload ‧ Help ‧ About ‧ Administer NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/7777

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7777`

 Title: 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討;Smooth and Periodic Minimal l_2-Solutions of Some Linear Matrix Equations Authors: 王統新;T-Xin Wang Contributors: 數學研究所 Keywords: 平滑與週期;最小l_2-解;smooth and periodic;minimal l_2 solution Date: 2000-07-19 Issue Date: 2009-09-22 11:05:08 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 週期矩陣常常出現在動態系統的學習上,而保秩的矩陣在微分代數系統也是很重要地.在本篇論文中我們考慮以下平滑及週期的線性矩陣方程其係數為保秩的線性矩陣係數. (1.1) A(t)x(t)=b(t), (1.2) A(t)X(t)B(t)=E(t), (1.3) A(t)X(t) + Y(t)B(t)=C(t), (1.4) A(t)X(t)B(t) + C(t)Y(t)D(t)=E(t). 因為它們可能無解所以我們有興趣的是以下平滑及週期的最小l_2-解的問題. (1.1a) min||A(t)x(t)-b(t)||_2 (1.2a) min||A(t)X(t)B(t)-E(t)||_2 (1.3a) min||A(t)X(t)+Y(t)B(t)-C(t)||_2 (1.4a) min||A(t)X(t)B(t)+C(t)Y(t)D(t)-E(t)||_2 Periodic matrices arise quite often in the study of dynamics. The matrices with constant rank is important in applications related to differential algebraic system.In this paper we consider the following smooth and periodic linear matrix equations with constant rank matrix coefficients respectively. (1.1) A(t)x(t)=b(t), (1.2) A(t)X(t)B(t)=E(t), (1.3) A(t)X(t) + Y(t)B(t)=C(t), (1.4) A(t)X(t)B(t) + C(t)Y(t)D(t)=E(t). Because they may be inconsistent (i.e., have no solution), we are interesting in the following smooth and periodic minimal l_2-solution problems respectively. (1.1a) min||A(t)x(t)-b(t)||_2 (1.2a) min||A(t)X(t)B(t)-E(t)||_2 (1.3a) min||A(t)X(t)+Y(t)B(t)-C(t)||_2 (1.4a) min||A(t)X(t)B(t)+C(t)Y(t)D(t)-E(t)||_2 Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File SizeFormat