English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22998388      Online Users : 312
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7777


    Title: 一些線性矩陣方程其平滑及週期的最小 l_2-解之探討;Smooth and Periodic Minimal l_2-Solutions of Some Linear Matrix Equations
    Authors: 王統新;T-Xin Wang
    Contributors: 數學研究所
    Keywords: 平滑與週期;最小l_2-解;smooth and periodic;minimal l_2 solution
    Date: 2000-07-19
    Issue Date: 2009-09-22 11:05:08 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 週期矩陣常常出現在動態系統的學習上,而保秩的矩陣在微分代數系統也是很重要地.在本篇論文中我們考慮以下平滑及週期的線性矩陣方程其係數為保秩的線性矩陣係數. (1.1) A(t)x(t)=b(t), (1.2) A(t)X(t)B(t)=E(t), (1.3) A(t)X(t) + Y(t)B(t)=C(t), (1.4) A(t)X(t)B(t) + C(t)Y(t)D(t)=E(t). 因為它們可能無解所以我們有興趣的是以下平滑及週期的最小l_2-解的問題. (1.1a) min||A(t)x(t)-b(t)||_2 (1.2a) min||A(t)X(t)B(t)-E(t)||_2 (1.3a) min||A(t)X(t)+Y(t)B(t)-C(t)||_2 (1.4a) min||A(t)X(t)B(t)+C(t)Y(t)D(t)-E(t)||_2 Periodic matrices arise quite often in the study of dynamics. The matrices with constant rank is important in applications related to differential algebraic system.In this paper we consider the following smooth and periodic linear matrix equations with constant rank matrix coefficients respectively. (1.1) A(t)x(t)=b(t), (1.2) A(t)X(t)B(t)=E(t), (1.3) A(t)X(t) + Y(t)B(t)=C(t), (1.4) A(t)X(t)B(t) + C(t)Y(t)D(t)=E(t). Because they may be inconsistent (i.e., have no solution), we are interesting in the following smooth and periodic minimal l_2-solution problems respectively. (1.1a) min||A(t)x(t)-b(t)||_2 (1.2a) min||A(t)X(t)B(t)-E(t)||_2 (1.3a) min||A(t)X(t)+Y(t)B(t)-C(t)||_2 (1.4a) min||A(t)X(t)B(t)+C(t)Y(t)D(t)-E(t)||_2
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown510View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明