中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77813
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41640583      Online Users : 1397
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77813


    Title: Numerical Radii of Matrices and its Submatrices
    Authors: 葉鎮宇;Ye, Zhen-Yu
    Contributors: 數學系
    Keywords: 數值半徑;矩陣;Numerical radius;Matrices
    Date: 2018-06-09
    Issue Date: 2018-08-31 14:57:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 假設 A = [a_{ij}]_{i,j=1}^{n} 並且 A′ 是的加權移位矩陣的權重 a_{i,i+1} 對所有 i = 1,...,n

    我們知道定理3.1 [1] 的 w(A) ≥ w(A′)。 在這篇論文中,我們考慮何時等式 w(A)= w(A)′ 成立。
    在本論文中,我們得到了一些 w(A)= w(A′) 意味著 A = A′ 的矩陣A。 我們證明
    (1) 如果 A 是一個非負矩陣,則 w(A)= w(A′) 若且唯若 A = A′,
    (2) 如果 A 是一個 Toeplitz 矩陣,則 w(A) = w(A′) 若且唯若
    A = A′,以及
    (3) 如果 A 是循環矩陣,則 w(A)= w(A′)若且唯若 A = A′。

    請注意,A′ 是一個加權移位。 如果 A′ 具有週期性非零權重,我們還考慮何時等式 w(A)= w(A′)
    成立。 我們首先研究 A′ 的權重的週期是一。
    給出了等式 w(A)= w(A′) 的充分必要條件。
    接下來,我們關注 A′ 的權重的週期是偶數。 我們證明,如果
    w(A)= w(A′),那麼A是整體可分解的。 最後,本文還考慮了 A′ 的權重週期為奇數的情況。

    ;Let A=[a_ij]_(i,j=1)^n and A′ be a weighted shift matrix of weights {a_i,i+1} for all i=1,...,n

    We know that w(A)≥w(A′) by Proposition 3.1{1}. In this thesis, we consider when the equality w(A)=w(A′) holds. In this thesis, we obtain some classes of matrices A for which w(A)=w(A′) implies A=A′. We show that (1) if A is a non-negative matrix, then w(A)=w(A′) if and only if A=A′, (2) if A is a Toeplitz matrix, then w(A)=w(A′) if and only if A=A′, and (3) if A is a circulant matrix, then w(A)=w(A′) if and only if A=A′.

    Note that A′ is a weighted shift. We also consider when the equality w(A)=w(A′) holds if A′ has periodic nonzero weights.
    We first study the period of weights of A′ is one.
    The sufficient and necessary condition of the equality w(A)=w(A′) is given.
    Next, we concerned with the period of weights of A′ is even. We show that if w(A)=w(A′), then A is unitarily reducible. Finally, the case that the period of weights of A′ is odd is also considered in this thesis.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML213View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明