English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22971486      Online Users : 452
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7783


    Title: 非線性邊界值問題正解之探討;On the positive solutions of nonlinear boundary value problems
    Authors: 洪春凰;Chen-Huang Hong
    Contributors: 數學研究所
    Keywords: 非線性邊界值問題;微分方程;三正解;三點邊界問題;函數微分方程;測度鏈;存在性與非存在性;二階系統;differential equations;triple positive solutions;three-points boundary condition;functional differential equation;measure chain;second order systems;existence and nonexistence;nonlinear boundary value problems
    Date: 2002-05-17
    Issue Date: 2009-09-22 11:05:18 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本論文中,我們將探討以下型態的非線性邊界值問題正解之存在性與非存在性: (*) u'(t)+f(t,u(t))=0, 0 <t <1; u屬於B,其中B為適當的邊界條件。給予f(t,.)適當的條件,利用 Krasnoselskii 的固定點定理,我們將給出在幾種不同邊界值條件下的微分方程式多重正解的存在或非存在性。 經由(*) 問題的探討,我們將一般的常微分方程式推廣至延遲的微分方程式 u'(t)+f(t,u(t+s))=0, 0<t <1 , -r < s < a, 來討論其解的存在性。更經由上述的延遲方程式的研究, 我們發現在時標(time scale)所定義的測度鏈(measure chain)上的微分方程式, (**)u'(t)+f(t,u(g(t)))=0, 0<t<1. 除了隱含方程式上的延遲性外,更可將一般的微分與差分方程做一個連結。 因此我們進一步討論(**)問題的正解存在性。 In this article, we concerned with the existence andxistence of positive solutions of the following nonlinear boundary value problem of the form: (*) u'(t)+f(t,u(t))=0, 0 <t <1. Under the suitable condition f(t,.), by using Krasnoselskii's fixed point theorem, we will give the existence andxistence of multiple positive solutions under several different boundary value conditions for the differential equations. It follows from the boundary value problem (*), we can extend general ordinary diferential equation to the delay differential equations u'(t)+f(t,u(t+s))=0, 0<t <1 , -r < s < a, and consider the existence of positive solutions. Moreover, it follows from above delay differential equations, we find that the differential equation on a measure chain defined on time scale of the form: (**) u'(t)+f(t,u(g(t)))=0, 0<t<1; combine the difference and differential equations. So we deal with the existence of positive solutions of the problem (**).
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown561View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明