本文研究了具有一般非線性的三種競爭合作系統之行波解的存在性。該模型可以從空間平均和時間延遲的Lotka-Volterra系統中推導出來。首先,我們引用KPP方程和兩種Lotka-Volterra競爭系統的行波解的一些性質。接著,使用這個行波解,我們可以為我們的模型建構一對上下解。藉由單調迭代法,我們可以導出行波解的存在性。此外,我們舉例說明一些例子來支持我們的結果。事實上,我們稍微將[5]的結果擴展到更一般的非線性。;In this thesis, we study the existence of traveling wave solutions for a three species competition cooperation system with general nonlinearity. The model can be derived from a spatially averaged and temporally delayed Lotka-Volterra system. First, we recall some properties of traveling wave solutions for KPP equation and two species Lotka-Volterra competition system. Using these traveling wave solutions, we can construct a pair of upper and lower solutions for our model. Then, by using the technique of monotone iteration method, we can derive the existence of the traveling wave solutions. Furthermore, we illustrate some examples to support our result. In fact, we minor extend the results of [5] to more general nonlinearity.