English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21625123      Online Users : 212
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77845


    Title: The well-posedness of Navier-Stokes equations and the incompressible limit of rotational compressible magnetohydrodynamic flows
    Authors: 蘇承芳;Su, Cheng-Fang
    Contributors: 數學系
    Keywords: 不可壓縮極限;磁流體;準地轉方程;適定性;表面張力;incompressible limits;magnetohydrodynamic flows;relative entropy method;Navier-Stokes equations;well-posedness;surface tension
    Date: 2018-07-26
    Issue Date: 2018-08-31 14:59:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文包含了兩個研究子題。在第一個研究子題裡,我們考慮了磁流體動力學流動的可壓縮模型。給予足夠好的初始值,證明出可壓縮且具有由柯氏力所造成的旋轉項的磁流體之不可壓縮極限,在不同的參數的調整之下,使用相對熵方法,分別以弱收斂的方式推導出帶有黏性項與不帶有黏性項的準地轉方程,且不可壓縮極限即為這些準地轉方程的解,然後我們在這個問題裡證明不同的準地轉方程分別具有全域強解及局部強解。

    在第二個研究子題裡,我們討論帶有表面張力的 Navier-Stokes 方程在自由邊界下的解存在性。為了處理與時間有關的邊界,我們引進 ALE formulation,找到某個良好的微分映射,將原本隨著時間而改變的邊界利用此映射變換後固定,然後經過光滑化、線化性的處理並使用固定點定理,最後證明出此系統的解存在性。;There are two sub-projects in this dissertation: one is the problem of the incompressible limits for rotational compressible MHD flows and another is the well-posedness of Navier-Stokes equations with surface tension in an optimal Sobolev space.
      
    In the first sub-project, we consider the compressible models of magnetohydrodynamic flows which gives rise to a variety of mathematical problems in many areas. We introduce the asymptotic limit for the compressible rotational magnetohydrodynamic flows with the well-prepared initial data such that a rigorous quasi-geostrophic equation with diffusion term governed by the magnetic field from a compressible rotational magnetohydrodynamic flows is derived. After that, we show the two results: the existence of the unique global strong solution of quasi-geostrophic equation with good regularity on the velocity and magnetic field and the derivation of quasi-geostrophic equation with diffusion.
      
    In the second sub-project, we establish the existence of a solution to the 2-dimensional Navier-Stokes equations with surface tension on a moving domain. To deal with the free boundary problem, we adopt the ALE formulation which transform the moving domain into a fixed domain. Next, we show the well-posedness of this systems in an optimal sobolev space and no compatibility conditions are required to guarantee the existence of a solution.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML65View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明