English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21617635      Online Users : 183
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77848


    Title: 哈地空間在開集合上的極大函數刻畫;Maximal function characterizations of Hardy spaces on some open sets
    Authors: 林淑惠;Lin, Shu-Huey
    Contributors: 數學系
    Keywords: 極大函數;Maximal function
    Date: 2018-08-08
    Issue Date: 2018-08-31 14:59:23 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在Rn 上關於哈地空間的理論最早是由Fefferman 和Stein所提出的, 他們所提出的結果提供了許多涉及卷積算子的精確估計的應用。Hardy 空間最重要的應用之一是當p ∈ (0, 1] 時,它們是Lebesgue 空間的良好替代品。這些在Rn 上Hardy空間理論也對於各種分析領域和偏微分方程扮演著重要角色,但是要檢查一個tempered distribution f 是否屬於Hp 是不容易的;然而Coifman and Latter 給了它原子的刻畫就解決了這個問題, Coifman 針對一維的狀況作了原子的定義,而Latter 則將它的結果做了推廣到多維的原子定義。之後,Jonsson, Sj¨ogren 和Wallin 三人則針對特別的閉子集上研究哈地空間的性質,而Miyachi 則是討論開集上的哈地空間。本文則針對特定開集做有關原子分解及極大函數刻畫。;The theory of Hardy spaces over Rn was originated by Fefferman and Stein , which was generalized several years ago to the case of proper subsets of Rn. The theory of Hardy spaces on the Euclidean space Rn plays an important role in various fields of analysis and partial differential equations; Their work resulted in many applications involving sharp estimates for convolution operators. It is not immediately apparent how much of a role the differential structure of Rn plays in obtaining these results. One of the most important applications of Hardy spaces is that they are good substitutes of Lebesgue spaces when p ∈ (0, 1]. However, it is not so easy to check whether a tempered distribution f belongs to Hp. An explicit representation theorem for functions in Hp, p ≤ 1, is given by Coifman and Latter, by means of a purely real variable constructure. The pioneering work of generalization was done by Jonsson, Sj¨ogren and Wallin for the case of suitable closed subsets and by Miyachi for the case of open subsets. In this article we study Hardy spaces over certain open subsets Ω ⊂ Rn. We first define the Hardy space on Ω by means of atoms, and then give different maximal function characterizations.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML88View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明