本研究在探討開發新型異質接面奈米結構之熱介面材料 (TIMs),因高功率電子元件運作時會產生大量熱能,電子元件與散熱器接觸面會產生間隙,進而形成一層熱阻抗(Thermal resistance),因此透過開發高熱導率TIMs可將電子元件與散熱器之間間隙填補進而提升熱傳導性能,對於高功率電子元件的散熱能大幅改善並提高電子元件壽命。本研究主要分為兩部份,第一部分係將回收之2B筆芯利用球磨方式,製備再生石墨烯 (Recycled 2B),再利用網印技術將再生石墨烯作為高度拉伸和低成本的熱界面材料,探討其TIMs之水平與垂直方向之熱傳導系數,並且實際應用於IGBT與散熱片之間的溫度量測。第二部分則是將市售之石墨烯 (Exfoliated Graphite Nanoplatelets,EGN) 經過球磨處理減少平均粒徑後,所產生高品質之球磨石墨烯粉末(Ball-Milled Exfoliated Graphite Nanoplatelets,BMEGN),再利用物理氣相沉積技術(Physical vapor deposition,PVD)將金原子濺鍍於球磨石墨烯表面,發展新型異質接面奈米結構熱介面材料,並探討其球磨處理與濺鍍金原子層兩者先後順序的不同,對於所製備熱介面材料熱傳導系數的影響,並進行一系列的實驗分析,並量測TIMs之水平與垂直方向之熱傳導系數,再將TIMs實際應用於電子元件的溫度量測。;This study explored the development of new heterogeneous interface thermal interface materials (TIMs). High-power electronic components generate a large amount of thermal energy during operation, and gaps are formed at the contact surfaces between the electronic components and the heat sink to form a layer of thermal resistance. Therefore, by developing high thermal conductivity TIMs, the gap can be filled to improve the heat conduction performance. The study is divided into two main parts. The first part is to recycle, recycled 2B using ball milling to produce recycled nanoplatelets graphite (Recycled 2B), and then use screen printing technology to use recycled graphene as a highly stretched and low-cost thermal interface. In the second part, the commercially available exfoliated graphite nanoplatelets (EGN) was ball milled to reduce the average particle size, resulting in a high - quality ball-milled exfoliated graphite nanoplatelets (BMEGN). Physical vapor deposition (PVD) is used to develop a novel nano-structure thermal interface material. The through-plane and in-plane thermal conductivity coefficients of the TIMs were measured. Final, the TIMs was actually applied to the temperature measurement of the electronic components.