在這篇論文,我們探討連通加權圖之和、中位點及位移,而且我們考慮的圖形都是在有限的情況下。 假設 是一個圖形,如果它的邊有一正實數的加權(也就是存在一個函數 對到正實數),以 來表示 這個邊的加權,這種圖形我們稱為加權圖,我們以 來表示它。 在連通加權圖上的路徑 ,這條路徑的加權定義為 = 。 對於加權圖 上的兩點 ,這兩點的加權距離定義為 ,這個最小值是在所有連接 的路徑 中取的。 對於加權圖 上的一點 ,這一點的加權和我們定義為 = ,而這個加權圖的和我們將它定義為 。 如果加權圖 上的一點v滿足 ,則我們稱v為此一加權圖的中位點。 如果加權圖的每個邊的加權都是1時,則 在加權圖 中,假設 是 的一個重排函數,則 的加權位移我們定義為 。這個圖形的加權和我們定義為 ,這個最大值是在V(G)的所有重排函數的加權位移取的。 在這篇論文,我們將探討: 1. 中位點在連通加權圖的位置。 2. 有n個點及最大degree為k之連通圖的和之範圍。 3. 加權圖的位移跟和之間的關係。 In this paper, we consider sums, medians and displacements of connected, weighted graphs. All graphs considered in this paper are finite graphs. Suppose that is a graph with positive weights on edges, (i.e, there exists a weight function to R ). w(e) is called the weight on an edge . Then is called a weighted graph. Suppose that is a connected, weighted graph. For a path in the weight of is defined by = . For two vertices in the weight distance between x and y is defined by , where the minimum is taken over all paths P which join x and y. For a vertex x the weight sum of x is = . The weight sum of a graph is . If a vertex v satisfies , then v is called a weight median of . If for every edge in then Suppose is a permutation of . Then the weight displacement of is defined by . The weight displacement of is defined by , where the maximum is taken over all permutations of . In this paper, we consider 1. The locations of weight medians of a connected, weighted graph. 2. The range of if is a connected graph of order n and with maximum degree. 3. The relationship between the weight sum and the weight displacement of a connected graph.