English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23148853      Online Users : 638
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7811


    Title: 低維度Cayley圖之研究;On Cayley graphs of degree 3
    Authors: 林容新;Rong-Shin Lin
    Contributors: 數學研究所
    Keywords: 漢米頓圈;Cayley 圖;Cayley graph;Hamiltonian cycle
    Date: 2002-06-28
    Issue Date: 2009-09-22 11:06:03 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在[3]中,Dirac在1952年證明,只要簡單圖G中,頂點個數至少3個,頂點的維度都大於或等於頂點個數的一半,就有漢米頓圈。Chvátal-Erdös在1972年證明,簡單圖G中,頂點個數至少3個且κ(G)大於或等於 α(G),則有漢米頓圈。此兩類的圖,邊的個數都要相當多,而在邊數比較少的圖中是否有漢米頓圈則是一個難解的問題。例如:Odd graph O(n),頂點集合V為2n-1個元素集合的n-1元子集合,任二頂點A與B相鄰若且唯若A交集 B為空集合 。這種圖有 個頂點,但每點的邊數只有n條。這種圖是否是漢米頓圖就是很難的問題,n=3是Petersen圖,沒有漢米頓圈,但n大於或等於 4時是有名的Kneser 猜想:假設n>3,則O(n) 是漢米頓圖。這個問題大部分的情況到現在仍未解決。 考慮最極端的例子,我們想要檢查一些3-正則圖是否有漢米頓圈。根據Cayley圖是漢米頓圖的猜想,我們有興趣去知道3-正則Cayley圖是否有漢米頓圈。然而要去分析所有的3-正則Cayley圖是一件難事,特別是缺乏邊對稱的圖[8]。本論文將探討下列特殊的3-正則類:1.圈化圖(Cycle connected graph)。2.SEP(n)。 We wnat to check some 3-regular graphs has Hamiltonian cycle.According to the conjucture:Cayley graphs are Hamiltonian cycle,we want to know 3-regular Cayley graphs has Hamiltonian cycle.But it is hard to anlysis all 3-regular Cayley graphs.In this paper,we discuss some specal 3-regular graphs: Cycle connected graph and SEP(n).
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明