English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21333574      Online Users : 579
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7813


    Title: 柏努力條件下常態分布之參數估計;Parameter Estimations of Condition Gaussian Distribution Given Bernoulli Distribution
    Authors: 馮博冠;Feng-Bo Guan
    Contributors: 數學研究所
    Keywords: 統計量
    Date: 2002-06-05
    Issue Date: 2009-09-22 11:06:06 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 摘 要 常態分布之樣本平均數及樣本變異數具有下列統計性質:(1)二者均為充分統計量.(2)二者獨立.(3)樣本平均數為 MLE , UMVUE 及動差估計式.(4)樣本變異數為 MLE ,動差估計式,經適當修正可為 UMVUE .(5)二者之變異數為 Cramer-Rao 下界.(6) 二者均為漸近有效估計式.本文探討柏努力條件下,條件樣本平均數及條件樣本變異數是否 仍有上列性質 . Abstract The sample mean and sample variance of a Gaussian distribution have the following nice statistical properties:(1)both are sufficient,(2)they are independent, (3)sample mean is m.l.e., UMVUE, and method of momemt estimator,(4)sample variance is m.l.e.,method of moment estimator and UMVUE if multiplied by a constant, (5)both estimators have variances achieve the Cramer-Rao lower bound,(6)both estimators are asymptotically efficient.Based on sample obtianed from the conditional Gaussian distribution given Bernoulli distribution,we study conditional sample mean and conditional sample variance and check if they also have the above statistical properties.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown565View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明