中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/78170
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41656199      線上人數 : 1596
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/78170


    題名: 開發多功能之複合纖維敷料以應用於糖尿病潰瘍之傷口修復;The Development of Composite Fibers as Multifunctional Wound Dressings for the Treatment of Diabetic Ulcer
    作者: 胡威文
    貢獻者: 國立中央大學化學工程與材料工程學系
    關鍵詞: 糖尿病性潰瘍;慢性傷口;傷口敷料;海藻酸鹽;聚乳酸羥基乙酸共聚物;電紡絲;原位轉染;凝血;銀奈米粒子;基因輸送;血小板衍生生長因子;聚乙烯亞胺;傷口癒合;diabetic ulcer;chronic wound;wound dressing;alginate;poly(lactide-co-glycolide) (PLGA);coelectrospinning;in situ transfection;hemostasis;silver nanoparticles;gene delivery;platelet-derived growth factor (PDGF);polyethylenimine (PEI);wound healing
    日期: 2018-12-19
    上傳時間: 2018-12-20 10:59:10 (UTC+8)
    出版者: 科技部
    摘要: 慢性傷口潰瘍是糖尿病所導致的主要併發症之ㄧ,其慢性發炎反應不僅會延緩肉芽組織成熟,且降低傷口的拉伸強度,嚴重者甚至會導致組織壞死而須截肢。因此開發多功能傷口敷料來全面性促進其傷口癒合成為刻不容緩的任務。在本研究中我們將利用先前計畫(MOST 103-2221-E-008 -118-)所發展的雙射流系統來開發褐藻酸鈣(calcium alginate)和聚乳酸羥基乙酸共聚物(PLGA)的複合奈米電紡絲。其中高保濕性的褐藻酸鈣可維持傷口的濕潤,而PLGA可增加纖維的機械強度和蛋白質吸附。為了抑制傷口感染,PLGA纖維將攜帶銀奈米粒子並進行長期釋放。另一方面,陰離子性的褐藻酸纖維可吸附帶正電的聚乙烯亞胺(PEI)/DNA奈米複合物,我們將藉此方式固定帶有血小板衍生生長因子(PDGF)基因的質體DNA,使其可原位轉染傷口的細胞並進行持續表達,由於PDGF可誘集免疫細胞,並促進纖維母細胞的增殖和分化,因此有利於胞外基質和血管的生成。除此之外,褐藻酸鈣可以釋放鈣離子至傷口部位以加速止血。而失去鈣離子的褐藻酸纖維會隨著時間逐漸降解,以提高細胞遷移並增強細胞貼附至PLGA纖維,進而促進組織再生。我們將應用共培養系統來研究轉染對細胞增殖和分化的影響,並以糖尿病小鼠模型探討所發展的纖維敷料對慢性傷口的癒合效果。 ;In Taiwan, the amount of medical resources required for the diabetes treatment steadily increases over recent years. Diabetic ulcer is a major complication of diabetes which leads chronic wound formation. The prolonged inflammatory phase may result in not only an immature granulation tissue but also a reduction of wound tensile strength, which always eventually cause amputations. Because diabetic wounds are deeper, more exudative, and more necrotic than the normal wounds, it is essential to develop a multifunctional wound dressing to promote tissue regeneration. Our previous project (MOST 103-2221-E-008 -118 -) demonstrated that a dual jet system can coelectrospin nanofibers in arbitrary ratios. Therefore, we will apply this method to fabricate a versatile composite nanofibrous matrix. Calcium alginate and poly(lactide-co-glycolide)(PLGA) will be coelectrospun as composite nanofibers. Calcium alginate fibers can be used as highly absorbent dressings to provide a moist environment in wound sites. On the other hand, PLGA will be applied to increase mechanical strength and protein adsorption. In addition, silver nanoparticles will be embedded in PLGA fibers for long-term release to inhibit the growth of microorganism. Plasmid DNA encoding platelet-derived growth factor (PDGF) will be delivered from composite fibers because this growth factor is a chemoattractant for neutrophils and can induce the proliferation and differentiation of fibroblasts. Furthermore, collagen deposition and angiogenesis can also be promoted. These PDGF plasmids will be complexed with polyethylenimine (PEI) to form cationic nanoparticles which will be adsorbed onto anionic alginate fibers through electrostatic interaction. As wound cells adhered to composite fibers, they can be in situ tranfected to continuously express PDGF. Moreover, calcium ions in alginate fibers can be released to wound sites through ion exchange to accelerate hemostasis. These calcium-insufficient alginate fibers should gradually degrade with time to allow cell infiltration, enhance cell adhesion onto PLGA fibers, and eventually improve tissue regeneration. A co-culture system will be applied to investigate the effect of transfection on cell proliferation and activation. Because complicated pathology of chronic wounds is difficult to simulate through in vitro experiments, the healing effects of these composite nanofibrous dressings will be evaluated using diabetic mouse models. Streptozocin (STZ) will be injected to C57/BL6 mice to damage insulin-producing beta cells, and the treated mice will become type I diabetic. On the other hand, mice with strain of diabetes spontaneous mutation (Leprdb) manifest morbid obesity and eventually become type II diabetic. Full-thickness skin wounds will be created in dorsal area of these diabetic mice by biopsy punches with diameters of 8 mm, which will be covered by the composite fibers. The wound tissues will be harvested and sectioned for histology analysis. Through hematoxylin/eosin (H/E) and immunohistochemical (IHC) staining, tissue regeneration in wound sites will be evaluated. In addition, Western blot and real-time polymerase chain reaction (RT-PCR) analysis will be performed to investigate the activity of re-epithelialization, remodeling, and angiogenesis in different stages. We expect this comprehensive study provides an ideal solution to facilitate diabetic-induced chronic wounds.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[化學工程與材料工程學系 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML241檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明