一維矽晶及矽化物奈米結構由於其具有高長寬比及高比表面積特性,使其在電子場發射元件、太陽能電池及光感測器等領域上有很大的應用潛力。雖然有許多製程技術已被用以大量製備一維矽晶及矽化物奈米結構,但如何精準調控所製備一維奈米結構之尺寸、形貌、結晶方向、排列週期等,常是決定這些奈米材料能否被實際應用的主要挑戰。因此,本計畫將由在矽單晶基材上製備大面積規則準直排列且尺寸、長度可調變之一維矽單晶奈米線陣列著手,並設計開發製備各式尖針狀、錐狀、中空管狀矽晶及矽化物奈米結構之新穎製程技術。同時,藉助各式材料分析與性質量測儀器有系統地探討不同一維奈米結構之生成反應機制,及其對應之電子場發射和紅外線感測等特性表現。本計畫擬以一年為期,除逐步添購實驗必需之儀器設備外,在相關實驗執行規劃上將針對以下四個子題分階段進行深入研究:一、 催化蝕刻法製備大面積規則準直排列且具漸變折射率之尖錐狀矽單晶奈米線陣列。二、 開發大面積規則準直排列一維矽單晶中空奈米管陣列之新穎濕式蝕刻製程技術。三、 金屬薄膜蒸鍍技術結合高溫熱退火處理製備一維 金屬矽化物/矽單晶 異質奈米線、管陣列。四、 開發具雙面漸變折射率之新穎 金屬矽化物/矽單晶 異質蕭基奈米結構陣列紅外線感測元件。 ;One-dimensional Si and silicide nanostructures have great potential applications in electron field emission devices, solar cells, and light sensors because of their high aspect ratio and large specific surface area. A variety of techniques have been used to fabricate large-scale one-dimensional Si and silicide nanostructures. However, the controls of size, morphology, crystallographic orientation, and periodicity of these one-dimensional nanostructures produced are major challenges for practical applications. Therefore, in this project, particular emphasis will be focused on the fabrication of large-area, periodic arrays of vertically-aligned, size- and length-tunable one-dimensional single-crystal Si nanowires, developing novel processing techniques for the fabrication of needle-like, cone-like, and hollow tubular Si and silicide nanostructures, and systematically investigating the formation mechanisms, and the corresponding electron field emission and infrared sensing properties.The main research tasks of this proposed project include the following:1. Fabrication of large-area, vertically-aligned, cone-like and graded-refractive-index Si nanowire arrays by using the catalytic etching process.2. Developing the novel multiple catalytic etching process for the fabrication of one-dimensional single-crystalline Si nanotube arrays.3. Fabrication of one-dimensional silicide/Si nano-heterostructure arrays by using the tilted-angle evaporation technique and heat treatments.4. Developing the novel process technique for the fabrication of double-sided graded-refractive-index silicide/Si nano-heterostructure Schottky infrared detectors.