摘要: | 本實驗室近幾年發展出 One-pot [X+1+Y]多併環噻吩製備方法,可以快速製得多併環噻吩,以其為核心,致力於多項有機光電材料之開發。本實驗室新開發之p-型與n-型OTFT小分子材料,溶液製程之電性效能名列全台前茅,載子移動率分別具2.6與0.5之 cm2V-1s-1之高電性表現。近期已將本實驗室所開發之核心-拓展,順利開發出應用於 DSSC、OPV、2PA與HTL-PSC此四個領域之新材料,並已展現好成果。例如,我們所開發之有機染敏材料,最高光電轉換效率可達11.2% PCE,為全台最高電性記錄。所開發之OPV材料已有>9.4%之光電轉換效能,正朝10% PCE邁進。所開發之2PA材料具相當高之雙光子吸收(~3000 GM)。本實驗室新開發之電動傳輸層材料(HTL)於Sn-based 鈣鈦礦太陽能電池(perovskite solar cell; PSC) 達7.23% PCE之高效能,為全球Sn-based PSC最高效能之一。於此計劃,我們將繼續改良目前這幾個電性最好、效能最高之材料,以完成元件端製程之優化,期將目前的好成果更上推層樓,並完成其文章之發表。同時我們亦將繼續開發電性更高、穩定性更好之OTFT/OPV/DSSC/2PA/PSC等領域之有機光電材料,期與全球頂尖實驗室一競高下,為台灣發光。 ;Organic thin film transistors (OTFTs) have attracted intensive attention for potential applications in flexible displays, low-cost electronic papers. In recent years, my group has developed facile [X+1+Y] one-pot synthetic routes for DTT (dithienothiophene), BTDT (benzothienodithiophene), TTA (tetrathienoacene), and PTA (pentathienothiophene) preparation. A few new fused-thiophene-based derivatives have been developed for OTFTs. For example, we reported stable soluble BTDT-based materials with 0.65 cm2V-1s-1 mobility fabricated via a solution process. For recent p-type materials development, we have developed two new soluble small molecules which exhibit mobilities of 1.7 and 2.6 cm2V-1s-1, fabricated via a solution process. The later will be the Taiwan highest mobility small molecules via a solution process. For n-type materials development, we have developed a few new air-stable quinoidal molecules, for example, DTTQ exhibits ~0.45 cm2V-1s-1 mobility in air (AFM). Notably, these newly developed thiophene-based units are good building blocks and can be applied in OPV, 2PA, DSSC, and PSC. For example, our TTA-based small molecules and thioalkylated thiophene-based polymers have exhibited 4% and 9.4% PCE in OPV, respectively. Our newly developed TTA-based chromophores exhibited high 2PA properties, up to 3000 GM, which is the highest performance of fused-thiophene-based 2PA chromophores. Our new developed TTA-based organic dyes exhibited PCE up to 11.2%, which set a new record in Taiwan. Lastly, our new developed hole transporting layer (HTL) small molecules in Sn-based PSC (perovskite solar cell) exhibited 7.23%, which is one of the best HTLs in the world.Here in this project, we will continue preparing our newly-developed high-performance materials for their devices optimization and then published these good results. At the same time, new thiophene-based molecules will be explored for OTFT, OPV, DSSC, 2PA, and PSC. The optical/electronic performance of these new materials will be evaluated. |