English  |  正體中文  |  简体中文  |  Items with full text/Total items : 67621/67621 (100%) Visitors : 23105239      Online Users : 104

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7842`

 Title: 正規壓縮算子與正規延拓算子;Normal Compressions and Normal Dilations Authors: 李佳萍;Chia-Ping Li Contributors: 數學研究所 Keywords: 正規延拓算子;正規壓縮算子;Normal Compressions;Normal Dilations Date: 2004-05-27 Issue Date: 2009-09-22 11:06:53 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 在此論文中，我們探討「正規壓縮算子」與「正規延拓算子」的性質。在「正規壓縮算子的數值域」（參考文獻８）中有如下的結果：『對於ｎ＋１階正規矩陣Ｎ的兩個ｎ階正規壓縮算子Ａ與Ｂ，Ａ與Ｂ么正等價，若且唯若，Ａ與Ｂ的所有特徵值都相同（包含重根）』。這篇論文的主要目地則是將上述結果推廣，並分成Ｎ是么正矩陣與Ｎ是正規矩陣兩種情形來探討。當Ｎ是么正矩陣時，Ａ與Ｂ么正等價，若且唯若，Ａ與Ｂ有超過半數的特徵值相同（包含重根）；當Ｎ是正規矩陣時，Ａ與Ｂ么正等價，若且唯若，Ａ與Ｂ有ｎ－１個特徵值相同（包含重根）。 In this thesis, we have two main results. First, we present the n-dimensional compressions of an (n+1)- dimensional unitary matrix are determined, up to unitary equivalence, by only half of their eigenvalues (counting multiplities). Second, we present the n-dimensional compressions of an (n+1)- dimensional normal matrix are determined, up to unitary equivalence, by their n-1 eigenvalues (counting multiplities). Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File SizeFormat
0KbUnknown515View/Open