English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41632779      線上人數 : 3748
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/78433


    題名: 脈衝雷射沉積技術開發全薄膜質子傳輸型固態氧化物燃料電池;Development of All-Thin-Film Integrated Proton-Conducting Solid Oxide Fuel Cells by Pulsed Laser Deposition
    作者: 李勝偉
    貢獻者: 國立中央大學材料科學與工程研究所
    關鍵詞: 固態氧化物燃料電池;氫能;質子傳輸型電解質;陽極;陰極;脈衝雷射沉積法;阻抗頻譜分析;三相邊界點;薄膜;傾斜角鍍膜技術;石墨稀;長時間穩定性;Solid oxide fuel cell;Hydrogen energy;Proton-conducting electrolyte;Anode;Cathode;Pulse laser deposition;Electrochemistry impedance spectroscopy;Three phase boundary;Thin film;Glancing angle deposition;Graphene;Long-term stability
    日期: 2018-12-19
    上傳時間: 2018-12-20 11:43:07 (UTC+8)
    出版者: 科技部
    摘要: 本三年期研究計畫規畫利用脈衝雷射沉積(Pulse laser deposition, PLD)技術,開發新世代高效率全薄膜(All-thin-film integrated)質子傳輸型固態氧化物燃料電池(Proton-conducting solid oxide fuel cell, P-SOFC),藉由縮短質子於固態電解質層之傳輸路徑,大幅提高電池轉換效能。本計畫第一年預計進行關鍵電解質之材料物性探討,同時開發氧化鎳(NiO)助燒結技術以有效降低電解質所需燒結溫度,並最佳化電解質與陰、陽極之匹配性以製備PLD電解質靶材,並以半電池驗證電解質薄膜化之電池效能。第二年將進行P-SOFC之全薄膜整合工程,在精確掌握BCZY-NiO複合陽極及BSCF陰極薄膜參數後,將於BCZY-NiO基板上實現BCZY-Ni/BCZY/BSCF全薄膜P-SOFC製作並驗證其電池操作性能及長時間穩定性,同時藉由交流阻抗頻譜分析(Electrochemistry impedance spectroscopy, EIS)探討電池單元各界面之阻抗機制,並利用聚焦離子束(Focused ion beam, FIB)三維重構技術解析其陰、陽極三相邊界點(Three phase boundary, TPB)密度及分佈;第三年本計畫探討將全薄膜燃料電池技術模組應用至高穩定性或低成本異質支撐基板的可能性,本計畫選定高穩定性Y2O3-ZrO2 (YSZ)-Ni基板進行全電池薄膜工程,同時首創利用傾斜角鍍膜技術調整全薄膜電池與異質基板間不匹配性問題,並精確設計製作具高密度三相邊界點陰、陽極微結構,有效提升薄膜P-SOFC性能,最終目標為全薄膜P-SOFC輸出功率密度達500 mW/cm2@ 600 ℃及200 mW/cm2@ 450 ℃,且經過50小時操作測試下,輸出功率衰退率小於10 %。本研究計畫亦同時與加州理工學院研究團隊合作,探討以具高催化性之氮摻雜石墨烯(N-doped graphene)在低操作溫度條件下(~450 ℃)取代薄膜P-SOFC之BSCF陰極的可能性。本研究計畫所開發之各項技術模組皆可單獨或整合應用於相關燃料電池技術平台;例如:PLD製作全薄膜P-SOFC技術亦可適用於濺鍍製程,甚至可進一步整合於其他低成本或高穩定性之異質基板(如不銹鋼或奈米孔洞發泡鎳基板)。 ;This three-year research project plans to develop a new generation of all-thin-film integrated proton-conducting solid oxide fuel cells (P-SOFCs) by using pulse laser deposition (PLD). In the first year of the project, the material properties of key proton-conducting electrolytes are expected to be explored and optimized. Meanwhile, NiO sintering aids are developed to effectively reduce the sintering temperature required for the BCZY electrolytes. This project also optimizes the matching of electrolytes with cathodes and anodes and to verify the half-cell performance with the thin-film electrolyte. The second year project will be all-thin-film integration of P-SOFC. With the precise control of BaCe1-x-yZrxYyO3-δ (BCZY)-NiO composite anode and Ba1-xSrxCo1-yFeyO3-δ (BSCF) cathode film parameters, BCZY-Ni/BCZY/BSCF all-thin-film P-SOFC will be fabricated on the BCZY-NiO supporting substrate and verified by its cell performance and long-term stability. At the same time, this project also employs the electrochemical impedance spectroscopy (EIS) to study the impedance mechanism of cell components and the focused ion beam (FIB) three-dimensional reconstruction technique to characterize the density and distribution of the three phase boundaries (TPB) at the anodic and cathodic sites. In the third year, this project will apply all-thin-film P-SOFC technical module to highly stable or low-cost heterogeneous supporting substrate and select Y2O3-ZrO2 (YSZ)-Ni substrate as support for the all-thin-film engineering. Meanwhile, the glancing angle deposition technique will be first used to adjust the problem of mismatch between all-thin-film P-SOFC and heterogeneous supporting substrates, and to accurately design and fabricate the cathode and anode microstructures with high density three-phase boundaries, effectively improving the cell performance of P-SOFC. The target for the all-thin-film P-SOFC is to achieve the output power density of 500 mW/cm2 @600 ℃ and 200 mW/cm2 @450 ℃ with a degradation rate less than 10% after 50 hours of operation. This research project also collaborates with Prof. Nai-chang Yeh of California Institute of Technology to explore the possibilities of replacing the BSCF cathode of all-thin-film P-SOFC with highly catalytic N-doped graphene at low operating temperature (~ 450 ℃). The technical modules developed in this research project can be applied individually or integratedly to relevant fuel cell technical platforms. For example, the all-thin-film P-SOFC technology using PLD can also be applied to the sputtering process, and can be further integrated into other low-cost or highly stable heterogeneous substrate (such as stainless steel or nano-pore nickel foam).
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[材料科學與工程研究所 ] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML274檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明