English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 37080912      線上人數 : 334
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/78480


    題名: 通過百分比精度監測開啟重力波天文學的新紀元( I );Opening of a New Era of Gravitational Wave Astronomy with Sub-Percent Accuracy( I )
    作者: 井上優貴
    貢獻者: 國立中央大學物理學系
    關鍵詞: 重力波;宇宙學;KAGRA;哈勃常數;校準;超越牛頓理論;Gravitational wave;Cosmology;KAGRA;Hubble constant;Calibration;Beyond the Newtonian theory
    日期: 2018-12-19
    上傳時間: 2018-12-20 11:52:44 (UTC+8)
    出版者: 科技部
    摘要: 重力波的偵測開啟了多重訊息天文觀測的新紀元。為了研究極端重力場下的物理並精確的驗證廣義相對論和宇宙學,精密校正重力波偵測儀器是最關鍵的工作。本計畫主持人井上優貴博士參與KAGRA重力波探測儀,並擔任這項重要任務。KAGRA是一個雙臂雷射干涉儀,雙臂各長3公里,位於地底並配備低溫設備,是現階段最先進的重力波偵測儀並為未來的偵測儀的模型。 本計畫中,井上博士將參與KAGRA在2019,2021和2022年的觀測時段,並開發全新的校正系統。校正系統的原理,主要在於對干涉儀注入精確已知的位移,再測量其反應。我們將採用兩個各自獨立的系統:光子校正系統與重力場校正系統,目標是將校正誤差降到低於1%。我們預期改進現有光子校正系統的光學部分,將工作頻率延伸到數個kHZ,符合重力波觀測的要求。重力場校正系統方面,則是將運用磁浮技術,製造高頻4極轉輪,直接產生重力場以製造位移。PI本人曾經在宇宙背景輻射實驗中開發超導磁浮技術,可直接應用在這項全新的校正系統上。 在進行校正的同時,我們利用這個全新的儀器(KAGRA),可進行基本物理研究。首先,我們將解決宇宙學中哈伯常數不吻合的謎題。現階段「造父變星-超新星」距離測量所測得的哈伯常數與背景輻射所得的哈伯常數有3個標準差的差異,重力波提供一個全新的方法以測量距離,可望瞭解這個差異的來源。要得到有意義的結果,重力波的校正精度必須在1%以下。其次,利用中子星融合的重力波,我們將可瞭解中子星的狀態方程式。同樣的,這個測量需要在4kHZ的範圍達到低於1%的校正精度。 更進一步,我們將利用重力場校正系統尋找超越牛頓重力理論的現象,我們將可改進現有Yukawa potential修正項的上限達3個數量級。 在應用方面,這個校正系統的開發將運用許多重要的工業技術。例如超導磁浮系統可運用於儲能飛輪上,無阻力的飛輪將可大幅減少能量損失,獲得很高的儲能效率。 總結而言,本計畫著重建立精準的校正系統,讓KAGRA這個精密的重力波探測儀得以完成其主要的研究任務,而同時也可以進行基礎物理問題,並在工業應用上有很高的潛力。 ;The discovery of Gravitational Wave (GW) marked an opening of a new era of multi-messenger GW astronomy. Exploring the new physics under the extreme gravity condition and eventually challenge the fundamental physics such as General Relativity and Cosmology in high precision, accurate calibration of the GW form is essential. Y.Inoue is working on KAGRA, which employs 3km-scale interferometer with the cryogenic and underground location technology that will be used in next-generation experiments.We expect to solve the degeneracies of parameters with world wide observation, and in particular, the polarization of GWs. Joint LIGO-Virgo-KAGRA (LVK) observations from 2019 will put us on the frontiers of GW astronomy and cosmology. In this proposal, Y.Inoue will join the GW in three observation on 2019, 2021, and 2022 and develop the new calibration systems. For calibration, we need to inject the well-known displacement for the calibration of the interferometer response. We propose the combination method of the photon calibrator and gravity field calibrator for sub-% uncertainty observations, which can apply the modulation with photon pressure and gravity gradient. We will improve the photon calibrator for the kHz observation by making the optical system. We have already developed the proto-type system. In this proposal, Y.Inoue will develop and install the improved system for observation. We will apply the super conducting magnetic levitation technology for the high frequency rotation. I have contributed to develop the super conducting magnetic levitation technology (SC-MAGLEV) in cosmic microwave experiment (CMB). By applying this method, we will achieve to develop the system. By employing these state-of-the-art instruments, we will be able to solve the three problems in fundamental physics. First, we will solve the Cosmology problem. The estimated Hubble constant between Cephied-SN distance ladder and CMB data has the 3-σ tension. We will measute the Hubble constant with GW. To solve the inconsistency, the systematic errors in the calibration of the absolute GW signal amplitude must be suppressed at the sub-% level to achieve higher precision Hubble constant measurable with the GW standard sirens. Second, we will observe the equation of state (EoS) of the Neutron star (NS). The EoS of NS is one of the unknown problems in Nuclear physics. To reach the precision of measuring EoS, we need to achieve the observation until 4 kHz and sub-% precision for EoS measurement.Third, we will explore the beyond the Newtonian theory around the sub m region. The current limit of the coupling constant of Yukawa-potential is about O (0.001) level. We can achieve three order magnitude higher sensitivity by applying the calibration instruments.Also, the series of the technology can apply to the energy problems in Taiwan. The SC-MAGLEV system can apply the flywheel for storing the energy of the power plant. The exchanging efficiency of the levitation system is expected to higher than previous methods due to the low frictional resistance.Approaches to solve unresolved problems by improving the calibration system are not only ingenious and indispensable research for exploring new physics, but also expect to be solved for the energy problem.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[物理學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML177檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明