English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21282897      Online Users : 618
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7854


    Title: 一個解開環面簇的奇異點的有效方法(三維情形);AN EFFECTIVE CONSTRUCTION TO RESOLVE SINGULARITIES ON TORIC VARIETIES
    Authors: 蕭新展;Hsin-Jine Hsiao
    Contributors: 數學研究所
    Keywords: 奇異點;環面簇;Toric varieties;singularity
    Date: 2005-06-17
    Issue Date: 2009-09-22 11:07:16 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在這篇論文中,我們主要想找出一個有效的方法來解開在三維空間中的環面簇的奇異點。我們知道,解開環面簇的奇異點可以透過一些加邊的動作。但事實上,所需要插入的邊是有一定的次序,而且有時可能需要插入很多的邊才能完全解開環面簇的奇異點。因此,找出一個最有效、最精簡的方法就變得非常重要。在二維的空間中,確實可以透過連分數的關係找出一個最精簡的分割方法。在三維空間中,我們仿照二維可以找到一個有效的分割方法。進一步地,我們提供了一個程式讓大家很明確的知道所要加的邊和分割的方法(參考附錄1、2)。但在三維空間中,因為所要討論的可能性和變數變多了,所以我們不確定這是不是最精簡的。不過,這已經是我們所能找出的方法中最有效的。 In this paper, we will introduce an effective method to find primitive vectors we insert in a three-dimensional nonsmooth simplicial cone σ such that σ is smoothly subdivided and a precise way to subdivided σ into three-dimensional smooth simplicial cones. Further, we design a computer program to help us to operate all necessary added primitive vectors by using our method. But we can not say that the method we use is a minimal solution. For the future, we will keep to resolve this problem.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown675View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明