本計畫預定將石墨烯濺鍍至銅板以及銅管,提高流體和固體表面接觸角,產生高疏水性表面,使 達成滴狀凝結熱傳,同時使流體不易進入表面孔穴中,增加活化孔穴數量而提高沸騰熱傳性能。同時 針對冷凍空調常用之冷媒,並找出合適之工作流體與石墨烯表面之熱傳配對。本計畫整體執行期限為 三年: 第一年預定完成(1)適合冷媒沸騰熱傳之微流道尺寸設計製作、(2)適合冷媒凝結熱傳之銅鰭管設計製 作、(3)池沸騰熱傳測試及管外凝結傳測試系統修改,並完成平滑表面之熱傳性能測試、以及(4)製作具 有石墨烯鍍層表面之銅板及銅管,並完成冷媒與該表面之之接觸角等性質量測。 第二年預定完成(1)冷媒於各微流道表面之池沸騰熱傳實驗,得出流道尺寸以及石墨烯鍍層表面之影 響、(2)冷媒於各鰭管表面之凝結熱傳實驗,得出鰭片間距、高度以及石墨烯鍍層表面之影響、(3)石墨 烯鍍層表面改質,使其能達到高疏水性、以及(4)依據(1), (2)項實驗結果,修改微流道及鰭管結構設計, 以期獲得較佳熱傳性能之表面。 第三年預定完成(1)完成冷媒於改質後之石墨烯微流道表面之池沸騰熱傳實驗、(2)完成冷媒於改質後之 石墨烯鰭管表面之凝結熱傳實驗、以及(3)得出適用於不同冷媒蒸發及凝結熱傳之最佳石墨烯鍍層表面。 ;This study proposes to deposit graphene coating layer on copper plate and copper tube surface to increase the contact between liquid and the solid surface. It is expected that the condensation mechanism will be changed from film wise to dropwise. The number of active cavities for nucleate generation will be increased to enhance the boiling heat transfer performance. The refrigerant used for air condition and refrigeration will be used as the working fluid in the study. It is aimed to find appropriate combination of the graphene coating surfaces and the refrigerants for boiling and condensation heat transfer enhancement. This is a three years period research project. The working packages for each year are listed below. 1st year: (1) micro channel surface design and fabrication for pool boiling heat transfer; (2) fin-tube design for condensation heat transfer; (3) Modification of existed pool boiling test system and condensation test system; and (4) completing graphene coating deposition on copper surface and contact angle measurement. 2nd year: (1) pool boiling heat transfer performance test of refrigerant on graphene coating micro channel surfaces; (2) condensation heat transfer performance test on graphene coating fin tubes; (3) graphene surface medication to achieve high hydrophobic characteristics for refrigerant; and (4) modification of micro channel surface and fin tube according to the (1) and (2) test results. 3rd year: (1) pool boiling heat transfer performance test on modified graphene surface; (2) condensation heat transfer performance test on modified graphene surface; (3) obtain the most appropriate graphene coating surfaces for boiling and condensation.