English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70588/70588 (100%)
Visitors : 23121397      Online Users : 528
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7857

    Title: 有關非線性平衡定律之柯西問題的廣域弱解;Global Weak Solutions to the Cauchy Problem of Nonlinear Balance Laws
    Authors: 張淵;Yuan Chang
    Contributors: 數學研究所
    Keywords: 廣義化Glimm方法;Cauchy問題;平衡定律之雙曲線系統;擬線性波方程;Lax方法;特徵方法;擾動Riemann問題;Riemann問題;非線性平衡定律;守恒定律;Conservation laws;Lax's method;Characteristic method;Perturbed Riemann problems;Riemann problems;Quasilinear wave equations;Hyperbolic systems of balance laws;Cauchy problem;Nonlinear balance laws;Generalized Glimm's method
    Date: 2008-07-08
    Issue Date: 2009-09-22 11:07:21 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本篇論文分為兩個部分。部分Ⅰ在探討對於具有奇異來源項的純量平衡定律的Riemann問題的Lax型解的存在性與唯一性。部分Ⅱ在探討對於擬線性波方程類的廣域Lipschitz連續解。 在部分Ⅰ我們對於純量非線性平衡定律的Riemann問題給予構造廣義化熵解的新途徑。方程式的來源項為奇異的,因其為δ函數與不連續函數的乘積。將來源項重新公式化地闡述,我們研究對應的擾動Riemann問題。擾動Riemann解的存在性與穩定性被建立,且Riemann問題的廣義化熵解被構造,其為對應的擾動Riemann解的極限。廣義化熵解的自我相似性亦得到,使得Lax方法可被擴展至具有奇異來源項的純量非線性平衡定律。 在部分Ⅱ我們對於擬線性波方程的Cauchy問題類研究廣域Lipschitz連續解的存在性。應用Lax方法與廣義化Glimm方法,我們構造對應的擾動Riemann問題的近似解且建立解的導數的廣域存在性。那麼,經由對於方程式的來源項證明其殘數為弱收歛,可完成廣域Lipschitz連續解的存在性。 This thesis is divided into two parts. The part I is: Existence and Uniqueness of Lax-Type Solutions to the Riemann Problem of Scalar Balance Law with Singular Source Term,and the part II is: Globally Lipschitz Continuous Solutions to a Class of Quasilinear Wave Equations. In the part I of the thesis we give a new approach of constructing the generalized entropy solutions to the Riemann problem of scalar nonlinear balance laws. The source term of equation is singular in the sense that it is a product of delta function and a discontinuous function. By re-formulating the source term, we study the corresponding perturbed Riemann problem. The existence and stability of perturbed Riemann solutions is established, and the generalized entropy solutions of Riemann problem are constructed as the limit of corresponding perturbed Riemann solutions. The self-similarity of generalized entropy solutions is also obtained so that Lax's method can be extended to the scalar nonlinear balance laws with singular source terms. In the part II of the thesis we investigate the existence of globally Lipschitz continuous solutions to a class of Cauchy problem of quasilinear wave equations. Applying the Lax's method and generalized Glimm's method, we construct the approximate solutions of the corresponding perturbed Riemann problem and establish the global existence for the derivatives of solutions. Then, the existence of global Lipschitz continuous solutions can be carried out by showing the weak convergence of residuals for the source term of equation. Keywords. Conservation laws; Nonlinear balance laws; Riemann problems; Perturbed Riemann problems; Characteristic method; Lax's method; Quasilinear wave equations; Hyperbolic systems of balance laws; Cauchy problem; Generalized Glimm's method.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明