中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/78634
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42142908      在线人数 : 1345
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/78634


    题名: 應用於行動數據分流之深度增強式學習方法;Deep Reinforcement Learning for Mobile Traffic Offloading
    作者: 黃志煒
    贡献者: 國立中央大學通訊工程系
    关键词: 5G;機器學習;深度學習;增強式學習;異質網路;行動流量分流;5G;Machine Learning;Deep Learning;Reinforcement Learning;HetNets;Mobile Traffic Offloading
    日期: 2018-12-19
    上传时间: 2018-12-20 12:08:41 (UTC+8)
    出版者: 科技部
    摘要: 5G 網路架構上,異質網路 (heterogeneous networks, HetNets),或稱作小型基地台網路 (small cell networks) 是被廣泛討論的 5G 技術,而且如何分流 (offloading) 是一項重要議題。在支援雲端控制的架構下,未來的資源分配需要主動預測問題,採取先發製人的措施,在尚未造成效能的減損之前,做出決策。而隨著 5G 演進大量導入的新技術大大增加了資源分配的複雜度,卻也造成了以機器學習為基礎的功能展露頭角的機會。各種機器學習方法中,又以深度增強式學習 (deep reinforcement learning, DRL) 最具前瞻與網路控制問題上的實用性。本計畫將聚焦在未來 5G 技術下,延續執行中計劃對於流量預測的做法,深入研究 DRL 在 HetNets 高能源效益分流問題的應用效果,並開放原始碼以供驗證,經由提出領先且可行之無線資源管理方法,做為進一步研究 5G 網路問題之重要參考。 ;In 5G networks, heterogeneous networks (HetNets) with small cells is a promising architecture to be deployed. The traffic offloading among macro and small cells is inevitably a key issue. Based on the cloud controlling structure, it is possible to design proactive strategies, so operation issues can be predicted and treated before suffering performance degradation. At the same time, the much more complex nature of 5G resource management is happen to be a suitable target to apply advanced machine learning approaches. In the project, we propose to apply deep reinforcement learning (DRL) on energy-efficient mobile traffic offloading. Taking advantage of our traffic forecasting works, we will investigate the DRL model for 5G networking issues, and further provide suggestion for future 5G resource management works.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[通訊工程學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML284检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明