中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7866
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41657590      Online Users : 1640
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7866


    Title: 以鑑別分析測量分布間之接近度;Measure the Closeness of Density Functions by Discriminant Analysis
    Authors: 鄭振成;Chen-Cheng Cheng
    Contributors: 數學研究所
    Keywords: 鑑別分析;Discriminant Analysis
    Date: 2006-12-29
    Issue Date: 2009-09-22 11:07:36 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 本文討論雙指數分布 ,柯西分布 , 分布(其中 表自由度為4之 分布)和常態分布 之間的接近程度,我們以鑑別分析作為判斷的標準,基本概念如下:較接近常態分布之分布在作常態性鑑別分析時鑑別正確率應較接近常態分布之鑑別正確率。較接近雙指數分布之分布在作雙指數性鑑別分析時鑑別正確率應較接近雙指數分布之鑑別正確率。較接近柯西分布之分布在作柯西性鑑別分析時鑑別正確率應較接近柯西分布之鑑別正確率。我們將用計算機模擬方式比較鑑別正確率,藉以判斷分布間之接近程度。 In this paper , we discuss the closeness of two density functions by discriminant analysis . The idea is as follows . Consider the discriminant analysis based on f , for those g that are close to f , the error rate of discriminantions for g will be close to error rate of discriminantions for f . We will make comparisons between transformed Normal , Double Exponential , Cauchy and t distributions by simulations .
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明