中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7867
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41653584      Online Users : 1556
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7867


    Title: Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays
    Authors: 陳宣伃;Hsuan-Yu Chen
    Contributors: 數學研究所
    Keywords: equilibrium;periodic solution;global exponential stability;Lyapunov functional;discrete time delay;contraction mapping theorem;cellular neural network
    Date: 2005-06-03
    Issue Date: 2009-09-22 11:07:37 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 論文摘要 這篇論文主要研究離散時間遲滯的修正型RTD 雙神經元網路之全局指數穩定。在加入三種不同邊界條件後得到三組修正型RTD 雙神經元細胞網路( DCNNs )的微分方程;每一組微分方程都包含了兩個相似的細胞,每個細胞都有非線性瞬時的自身回饋,並藉由Lipshitz非線性性質與其他細胞互相連結,但卻有不同的離散時間遲滯。每組微分方程都包含外界的輸入,在自身回饋及細胞間連結長度加入適當條件後,建造適當的Lyapunov functionals ,可以驗證出其唯一平衡點具有全局指數穩定的特性;若是給定週期之外界輸入,則可驗證出每 組微分方程的週期解也具有全局指數穩定的特性。最後我們也搭配一些數值結果來驗證理論分析。 Abstract In this thesis, we study the global exponential stability of the modi?ed RTD-based two-neuron networks with discrete time delays. After imposing the periodic, Dirichlet or Neumann boundary conditions, the resulting systems consist of two identical neurons, each possessing nonlinear instantaneous self-feedback and connected to the other neuron via a Lipschitz nonlinearity but with di®erent discrete time delays. For each two-neuron system with constant external inputs, under appropriate conditions on the self-feedback and connection strengths, we prove the unique equilibrium is globally exponentially stable by constructing a suitable Lyapunov functional. On the other hand, for such two-neuron systems with periodic external inputs, combining the techniques of Lyapunov functional with the contraction mapping theorem, we propose some su±cient conditions for establishing the existence, uniqueness and global exponential stability of the periodic solutions. Numerical results are also provided to demonstrate the theoretical analyses.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File SizeFormat


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明