English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65317/65317 (100%)
Visitors : 21361826      Online Users : 296
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7871


    Title: 單一非線性平衡律黎曼問題廣義解的存在性;Generalized Solution of the Riemann Problem for Some Scalar Balance Law with Singular Source Term
    Authors: 黃寒楨;Han-Jhen Huang
    Contributors: 數學研究所
    Keywords: 黎曼問題;nonlinear balance law;conservation laws;Riemann problem
    Date: 2006-02-24
    Issue Date: 2009-09-22 11:07:44 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 這篇論文主要在研究單一非線性平衡律黎曼問題廣義解的存在性。而這個方程式有別於一般的平衡律,方程式有加上來源項(source term),而這來源項是奇異函數(singular function),來源項的型式為delta函數和不連續函數的乘積,所以在分佈(distribution)下是沒有定義的。 我們先把這來源項的delta 函數光滑化,使整個來源項在分佈(distribution)下有定義,進而造出擾動黎曼問題(perturbed Riemann problem)的廣義解,我們稱這廣義解為 perturbed Riemann solutions 。 而且,perturbed Riemann solutions 取極值時( 趨近於零時),就能逼近黎曼問題廣義解的自相似性(self-similarity),同時,這個結果也能讓我們用Lax的方法去探討非線性平衡律。 We study the existence of generalized solutions to the Riemann problem for some scalar nonlinear balance law. The source term of equation is singular in the sense of a product of delta function and discontinuous function (so that it is undefined in distribution). We construct the generalized solutions based on a limiting process of measurable solutions (so-called perturbed Riemann solutions) for associated perturbed Riemann problem. The characteristic method is applied to study the behavior of perturbed Riemann solutions. Furthermore, the self-similarity of generalized solutions to our Riemann problem can be obtained from the limiting behavior of perturbed Riemann solutions, and this enables us to apply Lax's method to nonlinear balance laws.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown664View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明