English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%) Visitors : 24093066      Online Users : 332
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/7875

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/7875`

 Title: 網格型微分方程的行進波的數值解;Numerical Computation for Traveling Wave Solutions of Lattice Differential Equations Authors: 林意淳;Yi-Chun Lin Contributors: 數學研究所 Keywords: Traveling Wave Date: 2005-06-03 Issue Date: 2009-09-22 11:07:51 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 這篇論文主要在研究網格型微分方程的行進波的數值解。我們利用指數型遞減去逼進有限區間之外的行進解，在有限區間之內我們利用有限差分逼進解的一階微分項以及利用continuation method 去逼近輸出函數 。然後再利用牛頓法去疊代找出行進波的數值解。在論文的最後一節我們也給了一些數值圖形去驗證行進波解的存在性。 In this thesis, we investigate a numerical method for solving nonlinear differential-difference equations arising from the traveling wave equations of a large class of lattice di®erential equations. The pro?le equation is of ?rst order with asymptotically boundary conditions. The problem is approximated via a difference scheme which solves the problem on a finite interval by applying an asymptotic representation at the endpoints and iterative techniques to approximate the speed, and a continuation method to start the procedure. The procedure is tested on a class of problems which can be solved analytically to access the scheme's accuracy and stability, and applied to many lattice differential equations that models the waves propagation in neural networks. Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File SizeFormat

 社群 sharing

::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期：8-24-2009 :::
 DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明