中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7881
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 72880/72880 (100%)
造访人次 : 23153615      在线人数 : 453
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7881


    题名: 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性;Global Existence of Weak Solutions to the Initial-Boundary Value Problem of Inhomogeneous Hyperbolic Systems of Conservation Laws
    作者: 蘇萾欽;Ying-Chin Su
    贡献者: 數學研究所
    关键词: Lax方法;邊界黎曼問題解;擬線性波方程;黎曼問題;雙曲平衡律系統;廣義Glimm方法;generalized Glimm scheme;quasilinear wave equations;hyperbolic systems of balance laws;Lax method;boundary Riemann problem;Riemann problem
    日期: 2008-07-08
    上传时间: 2009-09-22 11:08:00 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 在本論文中,我們提供廣義的Glimm scheme來研究具有source項的2×2雙曲守恆律系統初始邊界值問題之整域弱解的存在性。由於source項的結構,我們推廣在[10,13]中所創造的方法來構造黎曼與邊界黎曼兩問題的弱解,而這樣的弱解正好能藉由Glimm scheme來做為構成近似解的要素。藉著修正在[7]的結果及證明residual的弱收斂,我們證實了scheme的相容性與穩定性。此外我們也研究擬線性波方程類之初始邊界值問題的整域Lipschitz連續解的存在性。應用Lax的方法及廣義Glimm方法,我們造出靠近邊界的初始邊界黎曼問題和遠離邊界的擾動離曼問題的近似解,經由證明近似解之residual的弱收斂,我們證實解的導數之整域存在性,進而得到問題的整域Lipschitz連續解的存在性。 In this article we provide a generalized version of Glimm scheme to study the global existence of weak solutions to the initial-boundary value problem of 2 by 2 hyperbolic systems of conservation laws with source terms. Due to the structure of source terms, we extend the methods invented in [10,13] to construct the weak solutions of Riemann and boundary Riemann problems, which can be dopted as a building block of the approximate solution by Glimm scheme. By modifying the results in [7] and showing the weak convergence of residuals, we establish the stability and consistency of scheme. In addition we investigate the existence of globally Lipschitz continuous solutions to a class of initial-boundary value problem of quasilinear wave equations. Applying the Lax method and generalized Glimm scheme, we construct the approximate solutions of initial-boundary Riemann problem near the boundary and perturbed Riemann problem away the boundary. By showing the weak convergence of residuals for the approximate solutions, we establish the global existence for the derivatives of solutions and obtain the existence of global Lipschitz continuous solutions of the problem.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明