中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/78820
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42771732      Online Users : 889
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/78820


    Title: 應用科學中的非線性平衡律;Nonlinear Balance Laws in Applied Sciences
    Authors: 洪盟凱
    Contributors: 國立中央大學數學系
    Keywords: 非線性守恆律;可壓縮尤拉方程;可壓縮Euler-Poisson 方程;Keller-Segel 方程;大氣散逸問題;生物趨向性;適定性;脈衝波;漸進穩定性;;Nonlinear balance laws;compressible Euler equations;compressible Euler-Poisson equations;Keller-Segel equations;hydrodynamic escape problem;chemotaxis;well-posedness;traveling pulses;asymptotic stability
    Date: 2018-12-19
    Issue Date: 2018-12-20 13:51:43 (UTC+8)
    Publisher: 科技部
    Abstract: 在這兩年期計畫裏,我們研究應用科學中非線性守恆律解的存在唯一性及解的行為。我們要研究 的模型最主要有下面的偏微分方程系統: 1. 天文物理中大氣散逸問題有關的可壓縮尤拉方程,此方程帶有重力項及廣域熱源。 2. 有關於生物趨向性帶有小參數的 Keller-Segel 方程。 3. 重力場理論中的可壓縮 Euler-Poisson 方程。 在第一年的計畫中,我們最主要是考慮大氣散逸問題中的解的穩定性,我們最主要是用新的有限 差分格式及對廣域熱源項的迭代方法。我們也會考慮大氣散逸問題中的多型態粒子模型解的適定性及 穩態解的存在唯一性,我們也會提供解的數值模擬。 在第二年的計畫中,我們考慮Keller-Segel 方程的脈衝波的穩定性,我們期待證明,唯一的穩 定脈衝波是穩態解。對於可壓縮Euler-Poisson 方程,我們期待找到邊界動量的條件,使得重力塌陷 的現象不會發生。我們期待得到此類型問題的分析及數值結果。 ;In this two-years project, we study the existence, uniqueness and behavior of solutions to several models of nonlinear systems of balance laws arise in areas of Applied Sciences. The models are governed by the following PDE systems: (1)Compressible Euler equations with gravitational and global heating source in hydrodynamic escape problem (HEP in short) of astrophysics. (2) Keller-Segel systems with small parameters in the chemotaxis of Biology. (3)Compressible Euler-Poisson equations in gravitation theory. In the first year, we focus on the stability of solutions to the HEP model by a new version of finite difference scheme that involves an iteration of global heating source. The multiple-phases model of HEP is also studied on the steady states and the global well-posedness of time-evolutionary solutions. Numerical simulations are also provided. In the second year, we focus on the stability issue of traveling pulses for Keller-Segel systems with small parameters. We wish to show that the only asymptotically stable traveling pulse is the steady state. For the compressible Euler-Poisson equations in gravitations, we find the condition of boundary momentum to prevent the gravitational collapse of the gas-like stars. We wish to obtain both analytic and numerical results.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML193View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明