近年來高分子型微流體晶片技術在生醫晶片、POCT 診斷測試、分析化學以及環境檢測等應用上有許多重要發展與突破。高分子塑膠材料具有低價、重量輕等優勢,在用於拋棄型的微流體晶片中扮演一重要的角色。在現階段微流體晶片發展中,許多成功的微流體晶片設計逐漸導入高分子塑材,且許多生醫、化學、環境等檢驗平台也逐漸使用高分子型微流體晶片技術做為分析檢測平台。然而,目前微流體晶片市場仍在發展中,高分子型微流體晶片仍以少量多樣的生產模式為主,微流體晶片與IC 晶片不同,微流體晶片尚無一體適用之設計與製造規格,微流道之結構、形狀、深度甚至於塑膠材料選用都需依照其應用與整體晶片設計來決定,因此往往也需要專業人才才能制定出最佳的微流體晶片生產策略。由於上述之塑膠微流體晶片製造技術等問題往往局制住微流體晶片在實務化以及普及化的發展。因此計畫提出「高分子微流體晶片智慧製造之建置與研究」構想,從基礎之塑膠微流晶片製程理論與模型建立,至最終之智慧製造系統整合,目標建構出一設計進–裝置出「Design in - Device out」的智慧型高分子型微流體晶片製造工坊。計畫分為三年三大階段進行,計畫第一年將建置微流體晶片之必要前段與後端高分子加工製程; 第二階段著重於建立各關鍵程程序之理論與模型,並導入至智慧學習系統中; 第三階段串聯整合各關鍵製程技術於智慧製造系統模組中,以建置高分子型微流體晶片智慧製造之計畫整體目標。 ;Polymer microfluidics is one of the important technology in the biomedical chip, point-of-care-testing diagnostic, analytical chemistry, and environmental applications. Due to the low-cost, light-weight advantages, polymer material provides great potential for disposable microfluidics applications. In currently polymer microfluidics development, many successfully microfluidics designs have transferred to commercialization using polymer materials and many biomedical, chemical, environment analysis users have to apply microfluidics system as their analytical platform. However, in currently stages, due to the low fabrication quantity and high design variety nature of the polymer microfluidic device. Besides, there is currently no one-fit-for-all fabrication and design rule for the microfluidics system. Therefore, it usually required a well-trained expert to design optimum strategy for polymer microfluidics production. These fabrication challenges fundamentally constrained the polymer microfluidics technology commercialization possibility. Thus, I propose the “Intelligent polymer microfluidics manufacturing development and investigation” project. Starting from fundamental polymer microfluidics process and theoretical development to the final intelligent manufacturing integration. The goal of this project is to establish a “Design in – Device out” intelligent polymer microfabrication fabrication house. Three major stages target to complete within three years. The 1st stage focus on developing key front-end and back-end polymer microfluidics procedures and 2nd stage focus on establishing the theoretical model for the intelligent learning system. And 3rd stage focus on the integration of each key polymer microfabrication process with intelligent manufacturing module to create the intelligent polymer microfabrication production line.