摘要: | 令f(x,α , ) 1 β1 、g(x,α , ) 2 β2 表二個機率密度函數,其中α1 、α2 、β1 、β2為參數,則f(x,α , ) − 1 β1 g(x,α , ) 2 β2k x , k = 2 或1,可用來描述f、g 之接近程度,即積分值越小表f、g 越接近,用機率觀點來測量接近度,此即本文之討論主題。 The closeness of two density functions f(x,α , ) 1 β1 and g(x,α , ) 2 β2 can be measured by f(x,α , ) − 1 β1 g(x,α , ) 2 β2 k x , k = 2 或1. In this paper, we discuss this measure for transformed normal, double exponential, cauchy and t densities. |